Advanced Travel Models

Florida Model Task Force

December 1, 2010

Frederick W. Duca

National Center for Smart Growth

Agenda

- Need for Advanced Models
- Characteristics of Advanced Models
- Comparison with existing Models
- Paths to Advanced Models
- Issues
- Experience
Need for Improved Models

- Current Models can not address
 - Road pricing
 - Time specific policies
 - Parking
 - Tolling
 - HOV
 - Speeds, volumes
 - Traffic operations improvements

Need for Improved Models - Continued

- Non-motorized travel
- Peak spreading
- Goods movement
(Source NCHRP – 288)
What is Needed

- Better representation of demand
 - Tours vs. trips
 - Disaggregate, household or individual vs. zones

- Better Network Representation
 - Continuous time representation vs. peak and off peak
 - Ability to integrate operational changes

Comparisons of Current and Advanced Models (Demand Side)

<table>
<thead>
<tr>
<th></th>
<th>Current Model</th>
<th>Advanced Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Unit</td>
<td>Trips between TAZ pairs</td>
<td>Individuals’ activity-travel patterns</td>
</tr>
<tr>
<td>Demand Categorization</td>
<td>Trip purpose</td>
<td>Activity type</td>
</tr>
<tr>
<td>Spatial Distribution</td>
<td>Gravity model</td>
<td>Activity location choice</td>
</tr>
<tr>
<td>Travel Mode</td>
<td>Trip mode split</td>
<td>Tour mode choice</td>
</tr>
<tr>
<td>Time-of-Day</td>
<td>Trip time-of-day split</td>
<td>Activity timing and duration</td>
</tr>
</tbody>
</table>
Comparisons of Current and Advanced Models (Supply Side)

<table>
<thead>
<tr>
<th></th>
<th>Current Model</th>
<th>Advanced Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Unit</td>
<td>Aggregated vehicle trips between TAZ pairs</td>
<td>Each vehicle with its driver/passengers</td>
</tr>
<tr>
<td>Time Period</td>
<td>Multiple hours</td>
<td>Second-by-second</td>
</tr>
<tr>
<td>Travel Time Estimation</td>
<td>Volume-delay function/v/c ratio</td>
<td>movement of individual vehicles</td>
</tr>
<tr>
<td>Assignment Method</td>
<td>Time-independent static assignment</td>
<td>Time-dependent dynamic assignment</td>
</tr>
</tbody>
</table>

Comparison of Current and Advanced Models-Feedback

Current Models
- Travel times between zones
- Response - Change
 - destination
 - mode

Advanced Models
- Travel times
- Tours which can not be easily accomplished
- Response - Change
 - tour destination(s)
 - tour mode
 - departure time
 - activity schedule
 - Stay home
Paths to Reach the Advanced Model (from demand side)

1. Population Synthesis
2. Activity-based Model to Estimate Individual’s Travel Demand
3. Individual’s Travel Demand Aggregated to OD Trip Tables
4. Time-Independent Static Traffic Assignment

Paths to Reach the Advanced Model (from supply side)

1. TAZ-level Population Update
2. Trip-based Model to Estimate TAZ-level Travel Demand (OD Trip Tables)
3. TAZ-level Travel Demand Disaggregated by Time-of-day
4. Time-dependent assignment
The Advanced Model

Population Synthesis

Activity-based Model to Estimate Individual’s Travel Demand

Time-dependent Dynamic Traffic Assignment

ACTIVITY ADJUSTMENTS:
- Trip Cancellation
- Destination Change
- Trip Chaining (Simple/Complex)
- Departure Time (Peak/Off-Peak)
- Mode Shift (Auto/Transit/Bike/Walk)

Congested Travel Time/Speed/Delay/Toll Value (e.g., ETLs)

Route Diversion due to Congestion

Advanced Model Issues

- Run time
- Staff availability
- Data
- Presenting Results
Issues with Advanced Models- Run Time

- **Current Models**
 - Demand – Zones or zones squared
 - Network – Links

- **Advanced Models**
 - Demand – households/people
 - Network – vehicles/people/time steps

- **Computer capability**
 - Speed continues to improve
 - Algorithms improve
 - Multiprocessing capability

Issues With Advanced Models – Staff Availability

- **Current Status**
 - Most still familiar with four step

- **Future**
 - Improving as MPOs move to advanced models
 - Graduate schools teaching new methods
Issues with Advanced Models - Data

- Activity data for demand analysis
- More detailed land use data
- Traffic operations
 - When operations issues are modeled

Issues with Advanced Models – Presenting Results

- Demand
 - Tours more complex than trips
- Network
 - Can not produce v/c ratios >1
 - Visualizations powerful tool
 - But
 - Difficult to compare visualizations
Experience with advanced models - Demand

- **Implemented**
 - Columbus
 - Sacramento
 - New York
 - San Francisco County

- **Planned**
 - Atlanta
 - Dallas
 - Seattle
 - Denver
 - San Diego
 - Portland
 - Los Angeles

Experience with Advanced Models - Network

- Chicago – experimental, Argonne Labs
- Burlington, VT
- Buffalo, NY
- Southern California (Moreno valley)
- New Orleans
- Sacramento
- Austin
- El Paso
- Champaign-Urbana, Illinois
Integrating Demand and Supply

- Burlington, VT
- Jacksonville, FL
- Sacramento, CA
- Columbus, OH

Jacksonville Advanced Model

- Activity Based Demand Models
 - Operate at parcel level
 - Forecast in 30 minute time slices
 - Allocate down to closest minute
- Time-Dependent Traffic Assignment
 - Operate at sub-TAZ level (activity locations for TRANSIMS)
 - LOS feedback at 5–15 minute level
 - Allocate second-by-second
- Dynamically integrate analysis of activities, networks and environment
 - Behaviorally detailed (VOTs, reliability)
 - Spatially detailed (small scale improvements)
 - Temporally detailed (reflect variations in supply and demand)