Implementation of a Trip-based Time-of-Day Choice Model in FSUTMS

presented to
Advanced Model Structures Committee

presented by
Heinrich McBean, Parsons Brinckerhoff

June 17, 2013

Objective

• Application of a trip-based time-of-day choice model in a congested region using FSUTMS
Test Model

- Central Florida region selected for test case.
- Test model based on CFRPM 5.0
 - 2005 Base Year
 - 4,549 zones
 - 9 standard trip purposes
 - HBW, HBSH, HBSR, HBO, NHB, LTK, HTK, Taxi, EI
 - 21 Special trip purposes
 - (Resident + Tourist + External) * (7 Major Attractions)

Approach for Trip-based TOD Choice Model

- Static TOD model after Trip Generation
 - Fixed TOD factors for initial stratification
 - TOD factors developed from observed local data

- TOD choice feedback model
 - Incremental logit model
 - Estimate TOD period choice after Highway Assignment
 - Feedback of TOD choice to Trip Distribution
CFRPM 5.0 – Basic Structure

- Highway pre-assignment congested travel time for HBW
- Free-flow travel time for HBNW and NHB

- FORTRAN executable
- HBW, HBNW and NHB trip purposes
- Mode choice output trip tables not segmented by household markets

CFRPM 5.0 – Time-of-Day Choice Structure

Future Year Model

Trip Generation (Daily)

Time-of-Day Zoning (in Periods)

Trip Distribution (by Household, Day Period)

Mode Choice (by Time-of-Day Period)

Highway Assignment (by Time-of-Day Period)

Trip Assignment

Basel Year Level of Service (Start and End Year Model)
Time-of-Day Factors

- Provides initial temporal stratification
- Adopted from work done previously by CSI
 - 2009 NHTS Florida Add-on data

- Developed for four time periods
 - AM Peak: 6:30 AM – 8:59 AM, 2.5 hours
 - MD: 9:00 AM – 3:29 PM, 6.5 hours
 - PM Peak: 3:30 PM – 6:29 PM, 3.0 hours
 - NT: 6:30 AM – 6:29 PM, 12.0 hours
- More periods were tested (and preferred) but increased runtime and exposed caused hardware issues

- Stratified by trip purpose and direction

TOD Choice Feedback Model

- Incremental logit model
- Driven by difference in travel impedance
 - Forecast year compared to base year
- Applied for each trip purpose independently
 - For all Time-of-Day periods
- Estimates switch in trips for each Time-of-Day period
- Feedback through trip distribution, mode choice and assignment:
 - Estimated TOD period trip tables
 - Travel impedance
 - Provides consistency in supply and demand assumptions and final forecast

\[
Z^TOD(n+1) = \frac{Z^TOD(n=0) \times \exp(x \times \Delta I(n+1))}{\sum Z^TOD(n=0) \times \exp(x \times \Delta I(n+1))}
\]

Where:

\(- C_{ij} \in I \) = Origin and destination TAZs
\(- x \) = Trip purpose from 1 through 9
\(- g \) = TOD period from 1 through 4
\(- \Delta I \) = Global iteration with TOD choice feedback

\[
Z^TOD(n=0) = \sum Z^TOD(n=0) \times \exp(x \times \Delta I(0))
\]

\[
\Delta I(n+1) = \text{TOD choice trips by TOD period, before the first global iteration}
\]

\[
\Delta I(n+1) = \text{Difference in TAZ impedance between the current iteration and the base year scenario}
\]

\[- \Delta E \text{ = Estimated calibrated dispersion coefficient (peak spreading elasticity)} \]
Time-of-Day Choice Model

- Difference in LOS (ΔL), forecast year compared to base year
 - Mode choice log sums, or
 - Destination choice utilities, or
 - Generalized cost

- Generalized cost used as impedance for test model
 - Travel time + Toll Plaza Delay + Toll Equivalent Time

- Mode choice log sums essential when evaluating rail and fixed guideway transit

- Dispersion coefficient (λ)
 - Requires data from Panel survey or “Before and After” survey for estimation/calibration
 - Default values used for test model
 - May be calibrated for local conditions

Effects of Changes

- Temporal stratification of all model components (except trip generation)

- Home-based trips by direction
 - Outbound (O) – from home
 - Inbound (I) – to home

- Period-specific networks and congested travel times for all model components (except transit)
 - Transit Peak: AM Peak period network and travel time
 - Transit Off-Peak: MD period network and travel time

- Model sensitivity to change in LOS
 Effects of Changes

• Internal trip purposes by direction maintained in all model components, except transit
 – HBWO, HBWI, HBSHO, HBSHI, HBSRO, HBSRI, HBSRO, NHB

• Requires greater calibration/validation effort
 – More time-of-day periods
 – Time-of-Day choice model
 – Panel data for calibration

• Longer model run time
 – More time periods
 – More trip purposes
 – Feedback loop

 Issues for Consideration

• Consistency in TAZ structure across all model scenarios (Required)

• Trip Distribution
 – Destination choice mode vs. gravity model

• Mode Choice
 – Same trip purpose as TOD choice model
 – Output trips by household markets
Issues for Consideration

- No trip-chaining information
- No disaggregate household/person/trip variables
- Trip-based model with time-of-day choice vs. activity-based model

2005 Base Year Forecast: Time-of-Day

- Time-of-day Factoring
- Four Time-of-Day periods
Time-of-Day Results: 2035 No-Build

- 2035 No-Build Future Year
 - 2005 highway and networks
 - 2035 socioeconomic data

Time-of-Day Results: 2035 No-Build

- Initial Mode Choice estimate of person trips by auto modes
 - Not including, taxi, trucks or special trips
Time-of-Day Results: 2035 Forecast

• Percent change in peak period person trips by auto modes, after 6 iterations of time-of-day choice feedback

<table>
<thead>
<tr>
<th>Time</th>
<th>AMPK</th>
<th>AMPK</th>
<th>AMPK</th>
<th>AMPK</th>
<th>AMPK</th>
<th>AMPK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Iteration</td>
<td>-1.500%</td>
<td>-1.000%</td>
<td>-0.500%</td>
<td>0.000%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Iteration</td>
<td>-1.500%</td>
<td>-1.000%</td>
<td>-0.500%</td>
<td>0.000%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Iteration</td>
<td>-1.500%</td>
<td>-1.000%</td>
<td>-0.500%</td>
<td>0.000%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Iteration</td>
<td>-1.500%</td>
<td>-1.000%</td>
<td>-0.500%</td>
<td>0.000%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Iteration</td>
<td>-1.500%</td>
<td>-1.000%</td>
<td>-0.500%</td>
<td>0.000%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Iteration</td>
<td>-1.500%</td>
<td>-1.000%</td>
<td>-0.500%</td>
<td>0.000%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time-of-Day Results: 2035 Forecast

• Percent change in peak period trips after 6 iterations of time-of-day choice feedback

<table>
<thead>
<tr>
<th>Time</th>
<th>NT</th>
<th>NT</th>
<th>NT</th>
<th>NT</th>
<th>NT</th>
<th>NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Iteration</td>
<td>4.500%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Iteration</td>
<td>4.000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Iteration</td>
<td>3.500%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th Iteration</td>
<td>3.000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th Iteration</td>
<td>2.500%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th Iteration</td>
<td>2.000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Time-of-Day Modeling Toolbox

- **Static Time-of-Day Model**
 - Fixed Time-of-Day factors
 - Relatively easy to implement
 - Assumes travel patterns will remain the same in the future
 - Not sensitive to change in LOS
 - Adequate for regions with limited or negligible congestion growth

- **Trip-based Time-of-Day Choice Model**
 - Dynamic model
 - Predicts shifts in time-of-day period of travel
 - Can model peak spreading
 - Sensitive to trip purpose and changes in LOS
 - May be sensitive to household markets
 - Useful in regions where peak period congestion is significant and growing
 - Aggregate
• Activity-based Travel Models
 – Disaggregate Time-of-Day Choice is built-in

Questions?

• Thank you.