Region-wide Microsimulation-based DTA:
Context, Approach, and Implementation for NFIPO

presented by
Howard Slavin & Daniel Morgan
Caliper Corporation

March 27, 2014

Context: Motivation

• Technical
 – Many transportation planning problems require dynamic models

• Practical
 – Effective transportation planning solutions require consensus/buy-in
Context: Technical Motivation

- Dynamic Traffic Assignments are needed for analyzing pricing strategies, capacity improvements, and ITS
- Congested travel times form the basis for crucial planning model estimation and application
- Static assignments produce biased travel times and biased models and forecasts
- These compromises are no longer necessary or justifiable
- ...

Context: Technical Motivation (cont.)

- ...
- Operational fidelity needed for traffic engineering work
- Many projects and traffic management measures have impacts that cannot be estimated with planning models
- These require detailed microsimulation in which lane level behavior is captured
Context: Practical Motivation

- Effective deployment hinges on usability, robustness
- DTAs lend themselves better to dynamic visualization and animation
- A more compelling tool for engaging stakeholders and the public

Context: Background

- Early experiments with macro DTA
- TRANSIMS & MITSIM
- Meso models-Integration, Dynasmart, & DYNAMIT
- Microsimulation thought to be impossible at the regional scale
- The TransModeler hybrid approach: Macro, Meso, and Micro in any combination on the same network
- 4-D lane level GIS for efficiency in simulation development
Context: Microscopic DTA Successes

- Eureka, CA
- Burlington, VT
- Phoenix, AZ
- Practical, calibrated, validated, and deployed Microscopic DTA models
- Hybrid models neither needed nor warranted for any reason

Approach: Key DTA Elements

- Dynamic shortest paths based upon departure times
- Realistic route choice
- Queue build-up and dissipation
- Short time intervals for travel time measurement
- Dynamic User Equilibrium condition- Temporal extension of Wardrop’s principle that all used paths between each OD pair, have the same minimum cost for a given departure time interval and that there are no lower cost routes
- Iterative computation to achieve convergence
Approach: Key DTA Elements

- Dynamic shortest paths based upon **departure times**
- Realistic route choice
- Queue build-up and dissipation
- **Short time intervals** for travel time measurement
- Dynamic User Equilibrium condition - Temporal extension of Wardrop’s principle: all used paths between each OD pair, have the same minimum cost for a given departure time interval and that there are no lower cost routes
- Iterative computation to achieve convergence

While rooted in familiar trip-based model theory

Direct tie-in with activity-based models (ABM)
Approach: Key DTA Elements

- Dynamic shortest paths based upon departure times
- **Realistic route choice**
- **Queue build-up and dissipation**
- Short time intervals for travel time measurement
- Dynamic User Equilibrium condition. Temporal extension of Wardrop’s equilibrium concept. The minimum cost for a given departure time interval and that there are no lower cost routes
- Iterative computation to achieve convergence

Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1-sec)
 - 2-d and 3-d dynamic visualization
- Microscopic in modeling accuracy
 - Microscopic (car following, lane changing)
 - Employs realistic route choice models
 - Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

• Microscopic in level of detail
 – Referenced to ground truth with accurate geometry
 – Lane level and intersection area representation
 – Temporal dynamics (as low as 0.1-sec)
 – 2-d and 3-d dynamic visualization

• Microscopic in modeling accuracy
 – Microscopic (car following, lane changing)
 – Employs realistic route choice models
 – Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 – Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1-sec)
 - 2-d and 3-d dynamic visualization
- Microscopic in modeling accuracy
 - Microscopic (car following, lane changing)
 - Employs realistic route choice models
 - Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Implementation: North Florida TPO

Region-wide, Six-county coverage

Implementation: North Florida TPO

Parcel-level activity location
Implementation: North Florida TPO

Major and local streets and centroid connectors

Intersection geometry and signal timings
Implementation: Framework

- Parcel-level origins and destinations
 - 492,684 parcels
 - Point-to-point route choice
 - Trips produced by DAYSIM
- Zonal truck and external traffic
 - 2,578 TAZs
 - Zone-to-zone route choice
 - Matrices produced by CUBE
- Integration/Linkage
 - DAYSIM
 - CUBE

Implementation: Challenges
Implementation: Challenges

Implementation: Features

- Read DAYSIM trips without temporal aggregation
- Handle parcel locations without spatial aggregation
- Use dense street network
 - Realistic accessibility, connectivity
- Simulate multiple travel modes
- Possess practical running times
Implementation: Input

- Demand: Disaggregate trip tables
 - Detailed demographic and trip information
 - Approximately 650K trips in 3-hour AM peak [6:00-9:00]

Implementation: Convergence
Implementation: Running Time

- DTA running time per iteration
 - Approx. 50 minutes overall
 - 3.1 GHz Intel Xeon Dual-Core 64-Bit CPU, 64 GB RAM

Implementation: Next Steps

- Model Development Review
 - Testing
 - Signal timings validation
 - Running time performance evaluation
- Model Calibration
 - Compare DTA volumes with counts
- Software integration/linkage
 - Refine
 - Deliver
 - Support