Myths of Dynamic Assignment (DTA)

presentation on
Advanced Traffic Assignment
Subcommittee

presented by
Stephen Lawe, RSG

June 17, 2013

Outline

• Start by making a case for DTA and defining it in the context of the tools we have available to us

• Then describe options for implementing DTA and recognize that the process need not be all encompassing
Trends in our industry

• Distinction between demand focus and supply focus is going away and instead we recognize the interconnectedness of these decisions

• Distinction between engineering focus of supply and planning focus of supply is merging
 – This is where DTA comes in

Types of Assignment Methods

• Static assignments [macroscopic] – good for long range regional forecasting where the methodological flexibility is consistent with assumptions

• ‘Engineering’ assignment [microscopic] – high degree of precision and certainty. No feedback to demand and no system convergence

• Dynamic Traffic Assignment [mesoscopic] – blends high level of specificity with convergent/calibration criteria
Why we need DTA

• Macroscopic – does not represent queuing or throughput constraints (impact of delay on downstream intersections)

• Microscopic - is limited in its ability to analyze effects such as oversaturation, queue spillback, dynamic routing, or peak spreading.

Advantages of DTA – Cost and TOD

• Better time of day (TOD) representation in supply
• Better TOD and cost feedback to demand.
• Ability to segment population by income
• Ability to represent reliability in less abstract measures

Dynamic network analysis models seek to provide a more detailed means to represent the interaction between travel choices, traffic flows, and time and cost measures in a temporally coherent manner.
Network Fidelity

- Clear tradeoff between convergence and data accuracy.
- Varying degrees of network fidelity and integrity based on the type of policies and need for accuracy.
 - High data accuracy: Merge, number and type of lanes
 • Can take 6-8 months to develop a corridor
 - Lower data accuracy: Viability of a tolled facility
 • Can take 6 months to develop an entire region

Increased network & loading integrity

Parking lot with an activity location per block face (4 total)

Block-face Activity Locations in Downtown Jacksonville
Another example

Residential Activity Locations in Clifton, FL

8 activity locations representing 15 individual households (parcels)

Data Integrity

- Data integrity v. required quality of results
- Challenge is one of automating the capture of data and processing so that it is consistent with model needs
- Synthesizing data where it does not exist or is too hard to develop
Traffic Signal Locations

- Automated Tools can be used to generate traffic signal locations and timing/phasing plans.
- Produced 877 signals out of 815 actual traffic signals in the 4-county Jacksonville region.
- These were manually checked and changed where needed using the automated results as a starting point.
- Default phasing/timing are used; no available electronic data.

Assignment Validation Data

- 190 ITS sensor and loop detectors on I-95 and I-295 collect data at 5-minute intervals.
- Count data from portable detectors is available for hundreds of other locations at 15-minute intervals.
- Counts contain vehicle class and distribution of vehicles by speed bin.
Results

• Simulation of cars shows realism
• Ability to represent time of day impacts (some problems are just 15 minutes – is this worth an investment)
• Ability to show meaningful graphics such as “heat plots”

Jacksonville, FL Congestion Heat Plot
Conclusion

• Need to clarify distinction between Microscopic and Mesoscopic (DTA)
• Need to identify the level of detail needed in the DTA and possibly consider a staged approach to development
• Need to continue looking into the integration of demand and supply.

For more information...

Stephen Lawe
Resource Systems Group, Inc.
55 Railroad Row
White River Junction, VT 05001
(802) 295-4999
Email: stephen.lawe@rsginc.com