Region-wide Microsimulation-based DTA
Results and Findings at the NFTPO

presented by
Paul Ricotta, P.E.
Caliper Corporation

May 6, 2015
• Dynamic Traffic Assignments are helpful for analyzing capacity improvements, and essential for analyzing pricing and ITS strategies
• Appropriate congested travel times are crucial for planning model estimation
• Operational fidelity necessary for traffic engineering studies
• Many projects and traffic management measures have impacts that require lane-level behavioral resolution for proper evaluation
Effective deployment hinges on usability, robustness, and manageable run times

DTA potentially lends itself better to visualization and animation

A more compelling tool for engaging stakeholders and the public at large
• Dynamic shortest paths based upon departure times
• Potentially more realistic route choice and driver behavior
• Queue build-up and dissipation
• Short time intervals for travel time measurement
• Dynamic User Equilibrium condition - a temporal extension of Wardrop’s principle
• Iterative computation required to achieve convergence
Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1-sec)

- Microscopic in modeling accuracy
 - Microscopic (car following, lane changing)
 - Employs realistic route choice models
 - Handles complex network infrastructure (signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

• Microscopic in level of detail
 – Referenced to ground truth with accurate geometry
 – Lane level and intersection area representation
 – Temporal dynamics (as low as 0.1-sec)
• Microscopic in modeling accuracy
 – Microscopic (car following, lane changing)
 – Employs realistic route choice models
 – Handles complex network infrastructure (signals, variable message signs, sensors, etc.)
 – Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1-sec)
 - 2-d and 3-d dynamic visualization

- Microscopic in modeling accuracy
 - Microscopic in car following, lane changing
 - Employs realistic route choice models
 - Handles complex network infrastructure (signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1-sec)
- Microscopic in modeling accuracy
 - Microscopic (car following, lane changing)
 - Employs realistic route choice models
 - Handles complex network infrastructure (Signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Approach: Microscopic DTA

- Microscopic in level of detail
 - Referenced to ground truth with accurate geometry
 - Lane level and intersection area representation
 - Temporal dynamics (as low as 0.1-sec)
 - 2-d and 3-d dynamic visualization

- Microscopic in modeling accuracy
 - Microscopic (car following, lane changing)
 - Employs realistic route choice models
 - Handles complex network infrastructure (signals, variable message signs, sensors, etc.)
 - Simulates multiple modes, user classes, vehicle types
Implementation: North Florida TPO

Region-wide, Six-county coverage
Implementation: North Florida TPO

Parcel-level activity location
Implementation: North Florida TPO

Major and local streets and centroid connectors
Implementation: North Florida TPO

Intersection geometry and signal timings
Implementation: Framework

• Parcel-level origins and destinations
 – 492,684 parcels
 – Point-to-point route choice
 – Trips produced by DAYSIM
• Zonal truck and external traffic
 – 2,578 TAZs
 – Zone-to-zone route choice
 – Initial Matrices produced by Cube
• Integration/Linkage
 – DAYSIM
 – Cube
Implementation: Challenges
Implementation: Features

• Read DAYSIM trips without temporal aggregation
• Handle parcel locations without spatial aggregation
• Use dense street network
 - Realistic accessibility, connectivity
• Simulate multiple travel modes
• Possess practical running times
Implementation: Input

- Demand: Disaggregate trip tables
 - Detailed demographic and trip information
 - Approximately 650K trips in 3-hour AM peak [6:00-9:00]
• DTA running time per iteration
 – Approx. 50 minutes overall
 – 3.1 GHz Intel Xeon Dual-Core 64-Bit CPU, 64 GB RAM
Implementation: Calibration

Link Flows vs. Counts: Percent RMSE by time period and facility type

<table>
<thead>
<tr>
<th>Peak Period</th>
<th>Road Class</th>
<th>N</th>
<th>%RMSE</th>
<th>w/i Acceptable Error</th>
<th>w/i Preferable Error</th>
<th>Sum of Counts/Sum of Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DTA</td>
<td>Static</td>
<td>DTA</td>
<td>Static</td>
<td>DTA</td>
</tr>
<tr>
<td>AM</td>
<td>All</td>
<td>554</td>
<td>447</td>
<td>50%</td>
<td>57%</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Major Arterials</td>
<td>182</td>
<td>136</td>
<td>50%</td>
<td>56%</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Freeways</td>
<td>14</td>
<td>7</td>
<td>16%</td>
<td>20%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29%</td>
</tr>
<tr>
<td>Midday</td>
<td>All</td>
<td>555</td>
<td>448</td>
<td>55%</td>
<td>55%</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>Major Arterials</td>
<td>183</td>
<td>137</td>
<td>55%</td>
<td>50%</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>Freeways</td>
<td>14</td>
<td>7</td>
<td>18%</td>
<td>20%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29%</td>
</tr>
<tr>
<td>PM</td>
<td>All</td>
<td>555</td>
<td>448</td>
<td>51%</td>
<td>51%</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td>Major Arterials</td>
<td>183</td>
<td>137</td>
<td>48%</td>
<td>45%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>Freeways</td>
<td>14</td>
<td>7</td>
<td>18%</td>
<td>35%</td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43%</td>
</tr>
</tbody>
</table>
Link Flows vs. Counts: Scattergram for AM Period
Implementation: Calibration

Departure Times: DAYSIM vs. Count Data

AM Departure Time Distribution: DAYSIM vs. Traffic Counts

- Daysim %
- Traffic Count %
Conclusion

• DTA approach is necessary for analyzing projects with lane level concerns
• DTA is a feasible approach for regional applications
• There is a reasonable interface with both ABM and trip-based approaches
• Significant calibration effort is necessary to replicate link-level queue lengths, and travel times, and link flows, however it is not insurmountable
• Ideally, signal timing and other operational data to replicate complex dynamics
Thank you for your time

paul@caliper.com