Simplified Trips-on-Project Software (STOPS): Strategies for Successful Application

presented to
Transit Committee
Florida Model Task Force

presented by
Cambridge Systematics, Inc.
John (Jay) Evans, AICP

Date
May 5, 2015
Overview

• Background

 • New Version 1.50 of STOPS
 • Setting up for success
 • Developing forecasts
 • Wrap up
Our Work with STOPS

- The Federal Transit Administration (FTA) commissioned Cambridge Systematics (CS) to produce several independent ridership forecasts using STOPS.

- CS collaborated with FTA and Resource Systems Group (RSG) on some preliminary training materials to help users work with STOPS.

- CS currently is working with STOPS to produce forecasts for potential New Starts and Small Starts projects.
Overview

• Background

• New Version 1.50 of STOPS
 • Setting up for success
 • Developing forecasts
 • Wrap up
New Version 1.50 of STOPS

• Similar in operation to prior releases, but new version is designed to generate more accurate results due to the following major changes
 – Revised nonhome-based (NHB) trip procedures
 – Enhanced the schedule-based path-building
 – Simplified the process of coding bus rapid transit (BRT) facilities
 – Improved representation of station-level impedance
 – Redefined the Fixed Guideway Visibility Factor
Similar in operation to prior releases, but new version is designed to generate more accurate results due to the following major changes:

- Expanded handling of multiple General Transit Feed Specification (GTFS) directories
- Updated the model calibration
- Added capacity to process split Census geography
- Revised identification of project trips to include trips that neither board nor alight at a project station
- Increased maximum problem size
Overview

• Background

• New Version 1.50 of STOPS

• Setting up for success

• Developing forecasts

• Wrap up
Many Details in Setting Up

• While all of the inputs are straightforward, there are many details in getting started with a STOPS forecast

• Inspecting the inputs carefully can save many hours later

• Some areas where things can go wrong...
 – Coordinate systems
 – Census-Zone splitting
 – District systems
 – GTFS coding
Coordinate Systems

- STOPS uses coordinates to relate data from different sources
 - Census transportation analysis zone (TAZ), tract, or block group shapefiles
 - Station shapefiles
 - Metropolitan Planning Organization (MPO) TAZ shapefiles
 - GTFS stop objects
- STOPS expects coordinates that are latitude and longitude
• STOPS uses census zones as the geographic reference for Census Transportation Planning Products (CTPP) Journey-to-Work (JTW) flows

• Good Practice
 – Large census zones split along project corridor
 – Large census zones split into smaller zones
 – Zones contain single station
Districts in STOPS Are Used in Several Ways

- Represent attraction areas for internal calibration
 - Match CTPP transit shares for each attraction district

- Supports the growth factoring step
 - Compute trips per worker and trips per employee in 2000 CTPP (by district) that are applied to each constituent zone future population and employment

- Used for reporting
• **Good Practice**
 – Districts for central business district (CBD) and suburban activity center
 – Four districts representing different walk areas to project
 – Six districts representing extended corridor
 – Four districts covering remaining region
GTFS Coding Strategy

• GTFS coding can be laborious!

• Strategy to manage GTFS coding includes
 – Prioritizing coding changes according to the likely impacts on estimates of project ridership
 – Monitoring the impacts of changes on ridership to provide information on when to stop
Overview

• Background

• New Version 1.50 of STOPS

• Setting up for success

• Developing forecasts

• Wrap up
Developing Forecasts

Some Things That Can Go Wrong

• Assuming that the first complete model run represents a completed forecast
• Concentrating too much attention on issues that have relatively little impact on project ridership
• Ignoring issues that have a major impact on project ridership
• Failing to demonstrate that STOPS understands existing peer services and how ridership will change with the introduction of the project
• It is recommended that users employ an application strategy

• An application strategy is an overall approach to creating plausible forecasts that is efficient and generates helpful insights along the way
Plan from the very beginning to work from current conditions through all of the changes from today to the future with the project.

<table>
<thead>
<tr>
<th>Step</th>
<th>Demographics</th>
<th>STOPS Input Slots</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Existing Scenario GTFS</td>
<td>No-Build Scenario GTFS</td>
</tr>
<tr>
<td>1</td>
<td>Current</td>
<td>Existing</td>
<td>Existing</td>
</tr>
<tr>
<td>2</td>
<td>Current</td>
<td>Existing</td>
<td>Existing</td>
</tr>
<tr>
<td>3</td>
<td>Current</td>
<td>Existing</td>
<td>No-Build</td>
</tr>
<tr>
<td>4</td>
<td>Horizon Year</td>
<td>Existing</td>
<td>No-Build</td>
</tr>
<tr>
<td>5</td>
<td>Horizon Year</td>
<td>Existing</td>
<td>No-Build</td>
</tr>
</tbody>
</table>

Running STOPS multiple times with small incremental improvements builds experience and increases confidence in the results.
Preparing the Forecast

You aren’t done until you have written up the results in plain language to describe

1. Existing ridership patterns and service characteristics

2. Service and ridership changes associated with the project itself assuming implementation in the current year

3. Service and ridership changes associated with implementation in the horizon year
 a. Other projects and service improvements included in the no-build definition
 b. Ridership changes associated with future demographics
Overview

• Background
• New Version 1.50 of STOPS
• Setting up for success
• Developing forecasts

• Wrap up
Acknowledgements and Thanks

• Jim Ryan, Federal Transit Administration
• Bill Woodford, Resource Systems Group
• Smith Myung, Cambridge Systematics
• Xuemei Liu, Cambridge Systematics
Contact Information

John (Jay) Evans, AICP, Principal
Cambridge Systematics, Inc.
301-347-0100
jevans@camsys.com