SHRP2 C10: Jacksonville

Partnership to Develop an Integrated Advanced Travel Demand Model and a Fine-grained Time-sensitive Network

Key Agency Partners:
- Florida Department of Transportation
- North Florida Transportation Planning Organization

Presented by:
Stephen Lawe

November 2009
An Integrated Model: Proposed Approach

- Develop a fully integrated model in Jacksonville, FL
 - DaySim (demand)
 - TRANSIMS (supply)
 - MOVES
- Features of integrated model
 - Spatial and temporal disaggregation
 - Fully open source
 - Policy sensitive
 - Transferable
 - Scalable
- Build upon exiting efforts
 - Previous implementations of DaySim and TRANSIMS
 - DaySim-TRANSIMS integration initiated in Sacramento
Enhanced Policy Sensitivities

- Traffic shifts by time-of-day
 - Peak spreading
 - Peak shifting
- Tolling and pricing impacts
 - Tolling
 - Congestion pricing
- Travel time reliability effects
- Operations impacts
 - Signals and coordination
 - ITS
- Travel Demand Management
 - Flexible work schedules
 - Work / shop at home
Jacksonville Overview

- Congested, urban context
 - Challenging traffic dynamics
 - Complex route and time-of-day choices

- Tractable
 - Isolated from other large urban areas
 - Transferable to other MPOs

- Metropolitan Area
 - Regional population = 1.2 million
 - Jacksonville population = 800,000
 - 1800 square miles
 - Significant population growth
Daysim Features

- Detailed travel demand forecasting microsimulation
- Implemented in multiple regions
 - Sacramento (SACOG)
 - Seattle (PSRC)
- Extensively tested and peer reviewed
- Open source
- Features
 - Simulates 24-hour itineraries
 - 30 Minute temporal resolution distributed to minute-by-minute
 - Parcel-level spatial resolution
 - Tour-based / trip-chaining
 - Captures effects of time and cost on all travel choices
Daysim Features

- Enhanced behavioral sensitivities
 - Distributed values of time (VOT)
 - Each person has individual value of time drawn from observed distributions
 - Sensitive to income, purpose, schedule pressure
 - Intra-household coordination
 - Across household members (ex. stay at home)
 - Sharing rides and escorting others (ex. school)
 - Joint participation in activities (ex. shopping)
- Multiple, flexible output formats
 - Activity list for use by TRANSIMS traffic simulation
 - Trip list similar to household survey data
 - Matrices for aggregate assignment
 - Person, parcel, TAZ, other
TRANSIMS Features

- Advanced traffic assignment and simulation capabilities
 - Dynamic Traffic Assignment (DTA)
 - Microsimulator
- Implemented in multiple regions
 - Chicago
 - Portland
 - Sacramento
 - Burlington
 - Washington DC
- Extensively tested and peer reviewed
- Open source
- Features
 - Simulate 24-hour travel plans reflecting controls, restrictions, geometries
 - Second-by-second temporal resolution
TRANSIMS Features

- **General Structure**
 - Geographically correct networks
 - “Activity Locations” represent loading points (often block front loading)
 - Intersection geometry (# of approach lanes, lane connectivity, pocket lanes, on street parking)
 - Intersection control (signalized intersection timing)

- **A suite of tools - C10 will use traffic assignment and simulation components:**
 - **Router** - develops routing “plans” to satisfy activity participation
 - **Microsimulator** - uses Router plans to perform a regional microsimulation of traffic on a second-by-second basis

- **Disaggregate simulation tracks:**
 - Individuals
 - Households
 - Vehicles

- **Spatial resolution for assignment**
 - Significantly finer-grained than TAZs
 - Larger than parcels
TRANSIMS Network Build - Jacksonville

- Built using TRANIMS tools
 - GISNet
 - TransimsNet
 - ArcNet

- Based on GIS centerline file
 - 75,000+ links
 - 56,000+ nodes
 - Up to 100,000 or more activity locations

Initial Jacksonville TRANSIMS Network
DaySim - TRANSIMS Integration

- DaySim: Provides detailed estimates of travel demand
- TRANSIMS: Provides detailed estimates of network performance
- MOVES: Provides detailed estimates of air quality
DaySim/TRANSIMS Integration

- **Daysim → TRANSIMS**
 - Produce TRANSIMS activity and other required files
 - Explicit treatment of drivers vs. passenger when sharing rides

- **TRANSIMS → Daysim**
 - Provide network level of service measures
 - Spatial and temporal detail preclude developing skims matrices a priori
 - “on demand” LOS measures as DaySim simulates travel behaviors

- **“Conservation of Demand”**
 - All trips must be assigned in order to derive full benefit from integrated model system
 - In past TRANSIMS implementations, a share of trips were allowed to go unfulfilled
Model Convergence

- Two convergence considerations
 - Assignment convergence
 - System convergence
- Attained through feedback within:
 - Iterations within TRANSIMS
 - DaySim-TRANSIMS iterations
- Defining convergence measures
 - Link / network based
 - Aggregate district-based
 - New disaggregate trip-based
- Parameterized to allow adjustment for different applications

Sacramento DaySim-TRANSIMS system convergence measures
Convergence & Disaggregate Gap

Convergence Issues:
- Criteria / thresholds to identify travelers to re-route
- % of travelers to re-route
- # of iterations required
- DaySim-Router-Microsimulator iterations
- Reasonable runtimes

3 phase implementation
1. Achieve assignment convergence within the Router and Microsimulator
2. Achieve system convergence (between DaySim and TRANSIMS)
3. Optimize / coordinate to reduce runtimes

Disaggregate Gap Measure

\[\sum_s (c_{xs} (\{c_{at}\}) - c_{ys} (\{c_{at}\})) \]

\[\sum_s c_{xs} (\{c_{at}\}) \]

where:
- \(s \) indexes trips
- \(\{c_{at}\} \) is an updated set of time-dependent link costs after combining new trip routes for a subset of household with pervious iterations’ routes for the other households
- \(c_{xs} \) is the cost of the trip \(s \) along the path that was used for the calculation of \(\{c_{at}\} \)
- \(c_{ys} \) is the cost of the trip \(s \) along its shortest path, assuming \(\{c_{at}\} \)
Jacksonville C10A Challenges

- Further spatial and temporal disaggregation of level-of-service
- Continue evaluation of convergence methods
- Continue network calibration/validation
- Policy Testing & Model Application
- Introduction of Network Microsimulator
- Share information with other MPOs
Contact Information

Expert Technical Group

Vidya Mysore
Florida Department of Transportation
vidya.mysore@dot.state.fl.us

Danny Lamb
Florida Department of Transportation
daniel.lamb@dot.state.fl.us

Project Coordinator

Steve Andrle
SHRP 2/TRB Staff
sandrle@nas.edu

Project Manager

Stephen Lawe
Resource Systems Group
slawe@rsginc.com