Time of Day in FSUTMS

presented to
MTF

presented by
Krishnan Viswanathan, Cambridge Systematics, Inc.
Thomas Rossi, Cambridge Systematics, Inc.

May 26, 2010
Outline

- Scope
- Time of Day Subcommittee
- NHTS Data Analysis
- Development of CONFACs
- Next Steps
Time of Day Subcommittee

- Siva Srinivasan, Chair

- Members
 - Dan Beaty
 - Ken Kaltenbach
 - Santanu Roy
 - Dave Schmitt
 - Daniel Miller
 - Kazem Oryani
 - Yongqiang Wu
 - Steve Infanti
 - Robert Boggs
 - Milton Locklear
 - Linda Little
 - Shi-Chiang Li
 - Fawzi Bitar
Scope

Two phase project

- Phase 1 – Develop and implement factors from NHTS and count data
- Phase 2 – Econometric models for incorporating into FSUTMS

Three tasks in Phase 1

- Develop and implement constant Time of Day factors
 - Develop new CONFAC
 - 2009 NHTS data for TOD factors
- Identify data elements for econometric approach
- Develop empirical methods to calculate travel skims
NHTS Data Analysis

- 2009 NHTS Data Used
 - 15,884 Households
 - 30,992 Persons
 - 114,910 Person Trips

- All analysis done using mid point of trip

- Trips into 24 one-hour periods
NHTS Data Analysis

- Compare across sampling regions
- Compare across urban areas by population
- Compare across Orlando, Tampa, Jacksonville, SE Florida
- Compare across resort areas
- Compare by retirees and snowbird population
- ????
Sampling Region Segmentation

Legend

<table>
<thead>
<tr>
<th>Sampling Region</th>
<th>Proposed Sample Size</th>
<th>Actual Sample Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,200</td>
<td>1,407</td>
</tr>
<tr>
<td>2</td>
<td>1,234</td>
<td>1,484</td>
</tr>
<tr>
<td>3</td>
<td>1,200</td>
<td>1,384</td>
</tr>
<tr>
<td>4</td>
<td>4,116</td>
<td>4,547</td>
</tr>
<tr>
<td>5</td>
<td>2,000</td>
<td>2,319</td>
</tr>
<tr>
<td>7</td>
<td>2,250</td>
<td>2,566</td>
</tr>
<tr>
<td>8</td>
<td>2,000</td>
<td>2,177</td>
</tr>
</tbody>
</table>

Counties
Comparison Across Urban Population

HBW by Urban Population Size

- Urban Population 50,000 to 199,999
- Urban Population 200,000 to 499,999
- Urban Population 500,000 to 999,999
- Urban Population 1,000,000 or more with heavy rail
- Urban Population 1,000,000 or more without heavy rail
Comparison Across Urban Population

HBSHOP by Urban Population Size

- Urban Population 50,000 to 199,999
- Urban Population 200,000 to 499,999
- Urban Population 500,000 to 999,999
- Urban Population 1,000,000 or more with heavy rail
- Urban Population 1,000,000 or more without heavy rail
Comparison Across Urban Population

HBSOCREC by Urban Population Size

- Urban Population 50,000 to 199,999
- Urban Population 200,000 to 499,999
- Urban Population 500,000 to 999,999
- Urban Population 1,000,000 or more with heavy rail
- Urban Population 1,000,000 or more without heavy rail
Comparison Across Urban Population

HBO by Urban Population Size

- Urban Population 50,000 to 199,999
- Urban Population 200,000 to 499,999
- Urban Population 500,000 to 999,999
- Urban Population 1,000,000 or more with heavy rail
- Urban Population 1,000,000 or more without heavy rail
Comparison Across Urban Population

NHB by Urban Population Size

- Urban Population 50,000 to 199,999
- Urban Population 200,000 to 499,999
- Urban Population 500,000 to 999,999
- Urban Population 1,000,000 or more with heavy rail
- Urban Population 1,000,000 or more without heavy rail
Development of CONFACs

- CONFAC is a factor used to convert peak hour capacity (as found in SPDCAP file) to daily capacity (as in loaded network).

- In the absence of data, values in the typical range of 0.08 to 0.12 have been assumed for regional CONFAC settings.

- 2008 traffic count data were used to develop CONFACs.

- Eleven different roadway classifications are available in the 2008 traffic count data. CONFACs were developed based on urban area population and roadway functional classifications.
Development of CONFACs

- For FSUTMS purposes, CONFAC values are needed for each facility type in order to be entered into the VFACTORS file.

- This will require either an equivalency table between facility types and functional classifications or conflating facility type data from FSUTMS networks to the 2008 traffic count database.
CONFAC Values
Urban Population – 50,000 to 199,999

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Rural Minor Arterial</th>
<th>Rural Principal Arterial -- Interstate</th>
<th>Rural Principal Arterial -- Other</th>
<th>Urban Minor Arterial</th>
<th>Urban Other Principal Arterial</th>
<th>Urban Principal Arterial -- Interstate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM to 9:00 AM</td>
<td>0.55</td>
<td>0.52</td>
<td>0.54</td>
<td>0.51</td>
<td>0.50</td>
<td>0.54</td>
</tr>
<tr>
<td>3:00 PM to 7:00 PM</td>
<td>0.28</td>
<td>0.27</td>
<td>0.28</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>9:00 AM to 3:00 PM</td>
<td>0.19</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>7:00 PM to 7:00 AM</td>
<td>0.24</td>
<td>0.17</td>
<td>0.23</td>
<td>0.21</td>
<td>0.20</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Next Steps and Schedule

- Finish analysis of urban area segmentations for Time-of-Day factors from NHTS
- Finalize CONFAC Tables
- Develop Guidelines for:
 - Time of day into Transit modeling
 - Validation and calibration
- Finish Subtasks 2 and 3