Using Activity Based Models for Policy Analysis

presented by
Stephen Lawe, RSG

May 6, 2015
1. Demonstrate how one might use an Activity Based Model (ABM) differently for policy analysis

2. Draw a distinction between policy analysis using an ABM v. trip based model (but specifically not to indicate that one method is inherently better)

3. Introduce a creative way of performing benefit/cost analysis using an ABM which could improve project selection
Two illustrative scenarios

1. Tampa Fixed-Guideway Scenario
 – Completely hypothetical

2. Benefit Cost Software
 – Example to be applied in Jacksonville and Tampa
First Example

Fixed Guideway Analysis in Tampa using an Activity Based Model
Fixed-Guideway Alternative

- Existing bus route converted to a light-rail line
 - PSTA 19 between Tarpon Springs and St. Petersburg
 - 35 miles (approx.) route length
- Removed loops in the route
- Improved headways
 - 20 mins -> 10 mins (peak)
 - 30 mins -> 15 mins (off-peak)
• Assumed a high level of accessibility to the system. The red dots are P&R/K&R
• Additionally, ensured adequate bus feeder system
Where do the riders live?

Ability to assess the number and type of people using the system even if trip has no home end

With this information we could plot income, or focus on populations of interest along many dimensions.
Should we extend the line?

Knowing the work zone of all riders (not just those using the system for work) can indicate potential ridership increases.
Use of Continuous Variables

- Fixed-guideway rider
- Not fixed-guideway rider

hhincome

0 50000 100000 150000
Those pesky non-home-based trips

Trips On Fixed-Guideway By Tour Purpose

Question: What is the travel purpose for non-home based trips?

- Work: 6,000
- School: 500
- Pers. Bus.: 2,000
- Shop: 1,000
- Eat Meal: 500
- Social\Recreational: 1,000

Home-based vs. Non-Home Based
Question: How many transit dependent people use the system?

Fixed-guideway trips by autos owned

- Home-based
 - 0 autos: 50%
 - 1+ autos: 40%
- Non-home based
 - 0 autos: 60%
 - 1+ autos: 70%
Who rides fixed-guideway?

Person Type by Transit Usage

- Full-time worker
- Part-time worker
- Non-working adult
- Retired
- University student
- High school student
- Other child

- Not a transit rider
- Transit rider, not fixed-guideway
- Fixed-guideway Rider
How many Fixed-Guideway Riders Rode Transit In Base Alternative?

- 66% No
- 33% Yes
Question: What is the detailed ridership distribution throughout the day?
Benefit/Cost analysis using an Activity Based Model
Benefit-Cost Analysis Overview

Uses monetary value as the metric to support decision-making by comparing different characteristics

• Q: Does an investment (relative to no or different investment) produce more benefits than costs?
 – To invest or not to invest
 – To prioritize investments
 – To better “design” a given investment

• Q: Who benefits?
 – Harder to answer this question with past tools
Consumer Surplus

- “Good” = travel from O to D
- $ Willing to Pay
- $ Actually Paid
- Willing minus Actual = Surplus
- Build Alternative Changes the Surplus
- Additional Surplus can be invested in some other good and thus has economic and personal value

\[
\Delta \text{Consumer Surplus} = T_A(C_A - C_B) + \frac{1}{2}(T_B - T_A)(C_A - C_B) \\
= \frac{1}{2}(C_A - C_B)(T_A + T_B) > 0
\]

Benefit-Cost Analysis Principles

• Analysis should...
 – Be comprehensive across the population at hand
 – Keep both costs and benefits mutually exclusive
 – Explicitly treat difficult-to-monetize benefits and costs
 – Be transparent
• Direct benefits
 – Mobility cost savings
 • Actual travel time savings
 • Reliability benefits
 – Out-of-pocket cost savings (e.g. fuel and tolls)
• Indirect benefits
 – Accident reduction benefits
 – Emissions (and other environmental) cost savings
 – Auto ownership cost savings
 – Physical activity health benefits
• Value of Travel Time Savings (VTTS or VOT)
• Value of Reliability Benefits (VOR)
• Value of Accidents Prevented (by type)
• Value of Quantities of Emissions Reduced
• Vehicle Operating Costs
• Vehicle Ownership Costs
• Value of Meeting Physical Activity Threshold
• Economic
 – Discount Rate
 – Inflation Rate
• Aggregate potential level of detail:
 – Zone
 – Market Segment (e.g. Home-Based-Work-Low-Income)

• Activity-based potential level of detail:
 – Person, along any characteristic (e.g. HH income, age, etc.)
 – Person-trips linked throughout day
• In aggregate modeling the zone becomes a proxy for the people

• Typical: Green is an “EJ” zone because threshold percent of residents meet EJ criteria; assume global proportion of trips
• In ABM modeling we know exactly who the EJ individuals are (dark green arrows) because model simulates individual characteristics.

• ABM enables more-precise accounting by person and characteristic.
Aggregate Calculation of Activity

- Physical Activity Threshold = 22 min/day (eg.)
 - Aggregate model sees three trips below threshold so this individual did not meet the threshold
ABM Calculation of Activity

- Physical Activity Threshold = 22 min/day (eg.)
 - ABM sees one daily activity that in total crosses threshold. Spatial disaggregation also captures access/egress
• Who benefits?
 – Benefits by individuals belong to a “Community of Concern” (similar to Environmental Justice)

<table>
<thead>
<tr>
<th>Benefits by Community of Concern</th>
<th>Total</th>
<th>COC</th>
<th>Non-COC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility - Residents</td>
<td>$30,752,893,835</td>
<td>$22,175,101,816</td>
<td>$8,577,792,019.52</td>
</tr>
<tr>
<td>Mobility - Trucks / Commercial</td>
<td>$3,529,976,260</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Emissions</td>
<td>$436,512,590</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Accidents</td>
<td>$1,521,366,983</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Reliability</td>
<td>$1,077,013,183</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Vehicle Operating</td>
<td>$15,985,470,110</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Auto Ownership</td>
<td>$2,279,791,318</td>
<td>$1,437,465,400</td>
<td>$842,325,917.56</td>
</tr>
<tr>
<td>Physical Activity</td>
<td>-$37,814,803</td>
<td>-$27,557,321</td>
<td>-$10,257,482.37</td>
</tr>
<tr>
<td>Total</td>
<td>$55,545,209,476</td>
<td>$23,585,009,895</td>
<td>$9,409,860,454.71</td>
</tr>
</tbody>
</table>

Source: RSG, SANDAG
When seeking to maximize and explain an investment it can be useful to understand:

- value of time distribution & income
- auto ownership or other household characteristics
- Time of day trips and choices (suppressed & induced demand)

Examples could include managed lanes/tolling
Thank You!

Stephen Lawe
802.295.4999
Stephen.lawe@rsginc.com