Overview

- What is the FSUTMS Air Quality Postprocessor (AQPP)?
- Benefits of the FSUTMS AQPP
- Emissions Calculation Process
- Impacted FSUTMS Models
- Schedule
- FSUTMS AQPP Training Opportunities
- Next Steps
- Demonstration
What is the FSUTMS AQPP?

- A module within FSUTMS/Cube Voyager that calculates emissions for portions of the nonattainment area (NAA) inside the FSUTMS travel demand model.

Calculates:
- Emissions related to Ozone formation
 - Oxides of Nitrogen (NOx)
 - Volatile Organic Compounds (VOCs)
- Emissions related to Greenhouse Gas (GHG) formation
 - Carbon Dioxide Equivalents (CO2eq)
 - Methane (CH4)
 - Nitrous Oxide (N2O)

Users:
- Ozone NAAs for conformity
- Areas interested in measuring GHG emissions
Benefits of the FSUTMS AQPP

Streamlines Calculation of Emissions
- Minimizes number of times needed to run MOVES
- Shorter run times
- Outputs summary tables in .csv and .dbf format

Standardized approach
- Reduces human error
- Facilitates transferability
- Streamlines interagency consultation process

Outputs loaded network with emissions by pollutant on each link (total and per mile) to visualize emissions geographically
Benefits of the FSUTMS AQPP (Cont’d)

Summary of Air Quality for All Three Counties

<table>
<thead>
<tr>
<th>NAME</th>
<th>CLASS</th>
<th>UNADJ. VMT</th>
<th>ADJ. FACTOR</th>
<th>ADJUSTED VMT</th>
<th>NOX (gms)</th>
<th>VOC (gms)</th>
<th>CO2eq (gms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Interstate</td>
<td>1</td>
<td>431660.4</td>
<td>0.8193</td>
<td>353670.3</td>
<td>2230370</td>
<td>141597.5</td>
<td>283240161</td>
</tr>
<tr>
<td>Rural Principal Arterial</td>
<td>2</td>
<td>1133389.7</td>
<td>0.6621</td>
<td>750358.8</td>
<td>4771367.8</td>
<td>327602.3</td>
<td>608713095</td>
</tr>
<tr>
<td>Rural Minor Arterial</td>
<td>6</td>
<td>945413.5</td>
<td>0.6846</td>
<td>647243.2</td>
<td>4342938.9</td>
<td>321148.3</td>
<td>542662199</td>
</tr>
<tr>
<td>Rural Major Collector</td>
<td>7</td>
<td>147404.7</td>
<td>0.8503</td>
<td>125340</td>
<td>823630</td>
<td>59505.7</td>
<td>104139257</td>
</tr>
<tr>
<td>Rural Minor Collector</td>
<td>8</td>
<td>104244.3</td>
<td>2.2597</td>
<td>235561.2</td>
<td>1659893.4</td>
<td>124230.8</td>
<td>207314002</td>
</tr>
<tr>
<td>Rural Local</td>
<td>9</td>
<td>719137.9</td>
<td>0.7917</td>
<td>569362.8</td>
<td>4877153.2</td>
<td>427691.1</td>
<td>583756735</td>
</tr>
<tr>
<td>Urban Interstate</td>
<td>11</td>
<td>1639814.6</td>
<td>0.8512</td>
<td>1395811.5</td>
<td>9562610.4</td>
<td>644999.8</td>
<td>1194210466</td>
</tr>
<tr>
<td>Urban Freeway</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Urban Other Arterial</td>
<td>14</td>
<td>5037196.4</td>
<td>0.949</td>
<td>4780487.9</td>
<td>36994655.5</td>
<td>3029946.7</td>
<td>4500363461</td>
</tr>
<tr>
<td>Urban Minor Arterial</td>
<td>16</td>
<td>3702246.4</td>
<td>0.9835</td>
<td>3641087.6</td>
<td>27429076.6</td>
<td>2160269.2</td>
<td>3343342866</td>
</tr>
<tr>
<td>Urban Collector</td>
<td>17</td>
<td>2476235.6</td>
<td>0.9528</td>
<td>2359331.4</td>
<td>17955054.2</td>
<td>1391454.8</td>
<td>2181185141</td>
</tr>
<tr>
<td>Urban Local</td>
<td>19</td>
<td>2073585.9</td>
<td>2.7422</td>
<td>5686197.8</td>
<td>51673131.2</td>
<td>4876668</td>
<td>6209710671</td>
</tr>
</tbody>
</table>
Benefits of the FSUTMS AQPP (Cont’d)
Emissions Calculation Process

1. **Step 1. Develop VMT and Speed Data**
 - Generate link-level VMT by multiplying AADT by link-length from travel demand model.

2. **Step 2. Reconcile with Count Data**
 - Aggregate link-level model VMT by functional class for each county.
 - Develop HPMS adjustment factor using ratio of HPMS VMT to model VMT.
 - Apply HPMS adjustment factor to model VMT estimates at link-level by functional class.

3. **Step 3. Develop Emissions Factors**
 - Develop emissions factors look-up tables in grams per mile by speed bin, pollutant, model year, and county in MOVES model.

4. **Step 4. Estimate Emissions**
 - Apply emissions factors to model VMT for each link to estimate emissions.
 - Aggregate link-level emission estimates by HPMS functional class for each county and pollutant.

FSUTMS/Cube Voyager procedure
MOVES procedure
(conducted by user outside of FSUTMS/Cube Voyager)
Impacted FSUTMS Models

- Currently exceeds 0.075 ppm standard based on 2007-2009 ozone monitoring data
 - Northwest Florida Regional Planning Model
 - Tampa Bay Regional Planning Model

- What happens if a potentially stricter standard is implemented?
Schedule

- **December 2009** – MOVES2009 Final Release
- **Early 2010** – NAAs run MOVES emissions factors using final release and localized parameters & FDOT finalize AQPP process
- **Spring/Summer 2010** – AQPPs complete for currently anticipated NAAs based on 0.075 ppm standard (base year)
- **Fall 2010** – AQPPs complete for anticipated NAAs based on a potentially stricter standard (base year)
- **August 2011** – EPA designates Ozone NAAs
- **August 2012** – Ozone NAA Conformity Determination Reports (CDRs) Must be Approved by U.S. DOT
FSUTMS AQPP Training Opportunities

FSUTMS Modeling Training Series

Knowledge Sharing Opportunities
- New & Advanced Webinars in Modeling Users Presentation Series (Bimonthly)
- FSUTMS Users Group Meetings
- Full Model Task Force Meetings (Half Oice a Year)
- Florida Model Applications (Conference Held Every Other Year)

Estimated Level of Difficulty
- Basic
- Intermediate
- Advanced

Contact
Terry Collier
FDOT Edison Planning Office
Tel: 954-414-4923
Email: terry.collier@florida.gov
Next Steps

- Coordinate FSUTMS AQPP process with:
 - EPA Region 4
 - FHWA FL Division and Resource Center
 - DEP SIP emissions budget calculation process
 - FDOT Districts
 - Potential ozone nonattainment areas (MPOs/Counties)

- Formalize interagency consultation process
 - Ozone baseline year (2007?)
 - MOVES input parameters by County
 - Use of HPMS adjustment factors

- Upon final MOVES2009 release:
 - Localize MOVES input parameters in coordination with DEP
 - Run MOVES emissions factors for base year
Demonstration of the FSUTMS AQPP
Contact Information

Diana Fields
FDOT Systems Planning
605 Suwannee Street, MS 19
Tallahassee, FL 32399
Phone (850) 414-4901
Fax (850) 414-4876
Email: Diana.Fields@dot.state.fl.us