
FreightSIM R Code Analysis
Krishnan Viswanathan, CDM Smith

June 10, 2015

This memorandum steps through the R code that is the heart of the Florida Freight Supply-chain Intermodal
Model (FreightSIM) and explains each and every step of the code from Firm Synthesis through Validation.
FreightSIM, at its core, is a series of R scripts that simulate the supply chain framework. The approach used
in the development of FreightSIM uses supply chain and economic methods to model various aspects of freight
decision-making behavior explicitly. In addition, this approach develops forecasts of freight mobility and
competitiveness, providing decision makers with better information to make decisions about transportation
investments and policies. Figure 1 shows the FreightSIM model process.

Model Management/Flow Scripts

The following scripts are used for model management in R.

• F_0a_Declare_Variables.R
• F_0b_Utility_Functions.R
• F_0c_Output_Functions.R
• F_0d_File_Locations.R
• F_0e_Load_Packages.R

A couple of comments on these scripts are given below. In F_0a_Declare_Variables.R, the threshold for
percentage of purchaser value in firm synthesis is set to 80 percent. The documentation (FreightSIM: Final
Report – February 2014 (called Report in the rest of this memorandum) does not provide any source for
the same so clarification of this number would be helpful. The Report indicates that handling time at
warehouse/distribution centers (WDCTime) & handling time at air terminals (Airtime) as 24 hours and
one hour respectively. The code however indicates both are 12 hours each. The assumption is that code
supersedes the Report, so any updates to the Report should reflect this.

Firm Synthesis

The initial element of the model synthesizes all firms in the United States and a sample of international firms.
This model synthesizes firms by industry category and by size category to capture the primary drivers of the
volume and type of trade at each establishment. The model synthesizes 7.7 million firms in the United States.

1

Figure 1. FreightSIM Process

Input Files

The following files are input into firm synthesis process:

• Correspondence between NAICS 6-digit, I/O NAICS, and SCTG (Parameters/F_corresp_naics6_n6io_sctg.csv)

2

• CBP data file (with infoUSA replaced for Florida part (Input/F_data_emp_cbp.csv)

• IO data file (Input/F_data_2010io.csv) – There are 386 variables and only a sample is shown below.

Process – Step 1 Firm Enumeration The first step in Firm Synthesis is to enumerate the number of
firms by zones, NAICS, and firm size category. There are eight firm size categories as follows:

• 1=‘1-19’,2=‘20-99’,3=‘100-249’,4=‘250-499’,5=‘500-999’,6=‘1,000-2,499’,7=‘2,500-4,999’,8=‘Over 5,000’

The process then does the following steps: * First, if the NAICS field in the CBP data is read as character, it
converts to integer.

cbp[, `:=`(naics, as.integer(naics))]

• Then it sums up the CBP data by NAICS categories, zones, county, state, and FAF zone into the eight
different firm size categories. Basically, all it is doing is deleting the number of employees column from
the CBP data file that was read in.

3

cbp <- cbp[, list(e1 = sum(e1), e2 = sum(e2), e3 = sum(e3), e4 = sum(e4), e5 = sum(e5),
e6 = sum(e6), e7 = sum(e7), e8 = sum(e8)), by = list(naics, SWTAZ, COUNTY,
STATE, FAFZONE)]

• The next step is to merge the CBP data with the Input–Output NAICS codes and SCTG codes

cbp <- merge(cbp, c_n6_n6io_sctg[, list(naics, NAICS6_Make, SCTG)], by = "naics")

• The next steps are to add 2 and 4 digit NAICS codes to the CBP data and convert it to long format
from wide format

add 2 and 4 digit NAICS
cbp[, `:=`(c("n2", "n4"), list(substr(naics, 1, 2), substr(naics, 1, 4)))]
cbp <- melt(cbp, measure.vars = paste0("e", 1:8), variable.name = "esizecat",

value.name = "est")

4

• The script then estimates the number of employees by establishment size, repeats the number of agent
businesses using the est variable and then finally adds an ID. What the second line of the script does
is that if that if the CBP data has est =5, then for each firm that is of size 5, it repeats it five times.
Doing this step increases the number of records from 5,051,216 to 7,709,498 records.

Estimate the number of employees
cbp[, `:=`(Emp, c(10L, 60L, 175L, 375L, 750L, 1750L, 3750L, 7500L)[esizecat])]
Enumerates the agent businesses using the est variable.
cbp <- cbp[rep(seq_len(cbp[, .N]), est),]
Add an ID
cbp[, `:=`(BusID, .I)]

Process – Step 2 Create Producer Database In this step, each firm simulates a specific commodity
based on probability thresholds for multiple commodities. First it generates a random probability value using
an uniform distribution (runif).

set.seed(151)
cbp[, `:=`(temprand, runif(.N))]

All the code below does is that for each NAICS category, it finds the index of the probability threshold and
assigns it a specific commodity. It is not clear how the numeric vector of probabilities was determined.

5

cbp[list(211111), `:=`(SCTG, c(16L, 19L)[1 + findInterval(temprand, c(0.45))])]
Petroleum Refineries: Gasoline and aviation turbine fuel; Fuel oils; Coal
and petroleum products, n.e.c.
cbp[list(324110), `:=`(SCTG, c(17L, 18L, 19L)[1 + findInterval(temprand, c(0.25,

0.5))])]
setkey(cbp, n4)
Farm Product Raw Material Merchant Wholesalers
cbp["4245", `:=`(SCTG, c(1L, 2L, 3L, 4L)[1 + findInterval(temprand, c(0.25,

0.5, 0.75))])]
Grocery and Related Product Wholesalers
cbp["4244", `:=`(SCTG, c(5L, 6L, 7L, 9L)[1 + findInterval(temprand, c(0.25,

0.5, 0.75))])]
Beer, Wine, and Distilled Alcoholic Beverage Merchant Wholesalers
cbp["4248", `:=`(SCTG, 8L)]

. . .

The next step is to create a producers database

All agents that produce some SCTG commodity become potential producers
producers <- cbp[SCTG > 0,]
Identify unique industry-sctg firms
setkey(producers, SWTAZ, FAFZONE, NAICS6_Make, SCTG)
and make sure at least one is maintained for each zone
producers[producers[, .I[.N], by = key(producers)]$V1, `:=`(MustKeep, 1L)]

The model then creates a sample of makers from the full producers table with the following criteria:

• Keep all individual businesses in the FL, AL, and GA region.
• Also keep all large businesses throughout the U.S.
• Keep those identified as MustKeep.

makers <- producers[STATE %in% c(1, 12, 13) | esizecat >= 6 | MustKeep == 1]

6

Process – Step 3 Create Consumer Database The code basically takes the cbp database created in
firm enumeration and renames the NAICS-Make variable to NAICS-Use variable.

consumers <- cbp[, list(BusID, SWTAZ, COUNTY, STATE, FAFZONE, NAICS6_Make, esizecat,
Emp)]

In the consumers table NAICS Use codes are those of the consuming firm
setnames(consumers, "NAICS6_Make", "NAICS6_Use")

setkey(consumers, SWTAZ, FAFZONE, NAICS6_Use, esizecat)
MustKeep flag: one unique industry-firm size combination retained for
every zone
consumers[consumers[, .I[.N], by = key(consumers)]$V1, `:=`(MustKeep, 1L)]

7

Similar to the Producers database step, the model then creates a sample of consumers from the full consumers
table with the following criteria:

• Keep all individual businesses in the FL, AL, and GA region.
• Also keep all large businesses throughout the U.S.
• Keep those identified as MustKeep

In criteria for large businesses is 5 or greater here whereas in the producers database it was 6 or greater.
Clarification on this would help. Here again, an uniform random distribution is used to create probability
thresholds.

set.seed(734)
consumers[, `:=`(temprand, runif(.N))]
pairs <- consumers[temprand > 0.95 | STATE %in% c(1, 12, 13) | esizecat >= 5 |

MustKeep == 1]
pairs[, `:=`(c("MustKeep", "temprand"), NULL)]

Next for each consuming firm generate a list of input commodities that need to be purchased.

Melt into long format and turn back into a data.table
io <- melt(io, id.vars = "NAICS6_Make", variable.name = "NAICS6_Use", value.name = "ProVal",

variable.factor = FALSE)
producers of transported commodities
io <- io[NAICS6_Make %in% unique(producers$NAICS6_Make)]
sort on NAICS_USe, ProVal
setkey(io, NAICS6_Use, ProVal)
cumulative pct value of the consumption inputs
io[, `:=`(CumPctProVal, cumsum(ProVal)/sum(ProVal)), by = NAICS6_Use]
io <- io[CumPctProVal > 1 - firmsyn$provalthreshold,] #select suppliers
including the first above the threshold value
io <- io[CumPctProVal > 1 - 0.8,]
Calcuate value per employee required (US domestic employment)
emp <- cbp[STATE > 0, list(Emp = sum(Emp)), by = NAICS6_Make]
setnames(emp, "NAICS6_Make", "NAICS6_Use")

8

io <- merge(io, emp, "NAICS6_Use")
io[, `:=`(ValEmp, ProVal/Emp)]

Next, the model merges the top suppliers with sample from consumers and add the first matching STCG code

pairs <- merge(io[, list(NAICS6_Use, NAICS6_Make, ValEmp)], pairs, "NAICS6_Use",
allow.cartesian = TRUE)

merge in the first matching SCTG code
pairs <- merge(c_n6_n6io_sctg[!duplicated(NAICS6_Make), list(NAICS6_Make, SCTG)],

pairs, "NAICS6_Make")

Some Naics6-Make industries (NAICS6_Make) make more than one SCTG. Account for this by simulating
the SCTG commodity supplied by them based on probability thresholds.

mult_n6make <- unique(c_n6_n6io_sctg[SCTG > 0 & Prop < 1, list(NAICS6_Make,
SCTG, Prop)])

setkey(pairs,NAICS6_Make)
n6m_samp <- pairs[NAICS6_Make %in% unique(mult_n6make$NAICS6_Make),.N,by=NAICS6_Make]
[!is.na(NAICS6_Make)]

9

assign_mult_sctg <- function(n6m) {
sample(mult_n6make$SCTG[mult_n6make$NAICS6_Make == n6m], n6m_samp$N[n6m_samp$NAICS6_Make ==

n6m], replace = TRUE, prob = mult_n6make$Prop[mult_n6make$NAICS6_Make ==
n6m])

}

for (i in 1:nrow(n6m_samp)) {
pairs[n6m_samp$NAICS6_Make[i], `:=`(SCTG, assign_mult_sctg(n6m_samp$NAICS6_Make[i]))]

}

The model also accounts for multiple SCTGs produced by the NAICS codes 211111 (the part of NAICS-Make
211000 making SCTG=16) and 324110 (corresponding with NAICS_Make 324110) in a similar way to on the
makers side above.

pairs[NAICS6_Make == 211000 & SCTG == 16, `:=`(SCTG, c(16L, 19L)[1 + findInterval(runif(.N),
c(0.45))])]

pairs[NAICS6_Make == 324110, `:=`(SCTG, c(17L, 18L, 19L)[1 + findInterval(runif(.N),
c(0.25, 0.5))])]

pairs[, `:=`(NAICS6_Use2, substr(NAICS6_Use, 1, 2))]

The model assumes a small chance that a consumer works with a wholesaler instead of a direct shipper for a
given shipment/commodity and therefore mutates some suppliers to wholesaler NAICS.

sctg_whl <- c(rep("424500", 4), rep("424400", 3), "424800", "424400", rep("423300",
3), rep("423500", 2), "423700", rep("424700", 4), "424600", "424200", rep("424600",
2), "423400", rep("423300", 2), rep("424100", 3), "424300", rep("423500",
2), "423700", "423800", "425100", rep("423100", 2), "425100", "423200",
"423900")

set.seed(1)
pairs[, `:=`(temprand, runif(.N))]
pairs[NAICS6_Use2 != c("42") & temprand < 0.3 & SCTG < 41, `:=`(NAICS6_Make,

sctg_whl[SCTG])]
pairs[NAICS6_Use2 != c("42") & temprand < 0.15 & SCTG %in% c(35, 38), `:=`(NAICS6_Make,

"423600")]
pairs[NAICS6_Use2 != c("42") & temprand < 0.15 & SCTG %in% c(40), `:=`(NAICS6_Make,

"424900")]
pairs[, `:=`(c("NAICS6_Use2", "temprand"), NULL)]

10

Accounting for multiple SCTGs from one NAICS and for wholesalers means that certain users now have
multiple identical inputs on a NAICS6-Make – SCTG basis aggregate (summing over ValEmp) so that
NAICS6-Make – SCTG is unique for each user

pairs <- pairs[, list(ValEmp = sum(ValEmp)), by = list(NAICS6_Make, SCTG, NAICS6_Use,
BusID, SWTAZ, COUNTY, STATE, FAFZONE, esizecat, Emp)]

Output Files

The following output files are generated after firm synthesis:

• Output/F_01_firmsyn_naicsbyempcat.csv
• Output/F_01_firmsyn_florida_naicsbyempcat.csv
• Output/F_01_firmsyn_florida_bycounty.csv
• Output/F_01_firmsyn_allfirmsbylocation.csv
• Output/F_01_firmsyn_allfirmsbysctgmake.csv
• Output/F_01_firmsyn_allfirmsbysctgmakeloc.csv
• Output/F_01_firmsyn_firmempcountbytaz.csv
• Output/F_01_firmsyn_makers.csv
• Output/F_01_firmsyn_pairs.csv

The output generated from the model does not include the last two files (_firmsyn_makers & firmsyn_pairs).

Supplier Selection

The supplier selection model pairs up buyers and suppliers among the firms that have been synthesized in
firm synthesis based on the size of each firm, their industry, and the distance between them.

The first step is to merge the makers and users from the firm synthesis step. The makers and users are
appended with O and D to distinguish between them once they are joined. The user table is sorted in the
order given in the setkey statement.

Naming of makers and users to distinguish once joined
setnames(makers, c("SWTAZ", "COUNTY", "STATE", "FAFZONE", "esizecat", "Emp",

"BusID"), paste0("o", c("SWTAZ", "COUNTY", "STATE", "FAFZONE", "esizecat",
"Emp", "BusID")))

setnames(pairs, c("ValEmp", "BusID", "SWTAZ", "COUNTY", "STATE", "FAFZONE",

11

"esizecat", "Emp"), paste0("d", c("ValEmp", "BusID", "SWTAZ", "COUNTY",
"STATE", "FAFZONE", "esizecat", "Emp")))

setkey(pairs, SCTG, dFAFZONE, NAICS6_Make, NAICS6_Use) #key to sort for later sampling

The next step is to select the required fields from the FAF data and get the Great Circle Distance (GCD)
between Origin and Destination TAZs. The tazgcd file that is read as input is shown in Figure 2. It basically
takes the lat/long for each TAZ and obtains the GCD between every TAZ pair using the code below. The
allow.cartesian=TRUE command is a SQL join that combines each row from the first table with each row
from the second table.

Figure 2. Input TAZ GCD File

select just required fields from FAF data
faf <- faf[, list(SCTG, oFAFZONE, dFAFZONE, tons)]

convert tazgcd to distances between all zones is list
tazgcd <- data.table(k = 1, tazgcd, key = "k")[data.table(k = 1, tazgcd, key = "k"),

allow.cartesian = TRUE][, `:=`(k, NULL)]
setnames(tazgcd, c("oFAFZONE", "oSWTAZ", "oLong", "oLat", "dFAFZONE", "dSWTAZ",

"dLong", "dLat"))
Calculate the Great Circle distance (in miles) between two points
specified by radian latitude/longitude
tazgcd[, `:=`(GCD, 3959 * 2 * asin(sqrt(sin((dLat - oLat)/2)^2 + cos(oLat) *

cos(dLat) * sin((dLong - oLong)/2)^2)))]
tazgcd[, `:=`(c("oFAFZONE", "oLong", "oLat", "dFAFZONE", "dLong", "dLat"), NULL)]
setkey(tazgcd, oSWTAZ, dSWTAZ)

After running the code, the GCD between each TAZ pair is shown below.

The next step is to generate a sample of makers and users and using functions. Given a number of makers
required (m), the minimum row index for the set of makers (mmin), the maximum row index for the makers
(mmax), a number of sets of candidates to return – i.e„ number of buyers (u) and a maximum number of
candidates to return per buyer (n), the maker_list_gen function will in the case where there are fewer makers
than n, replicate a sequences from mmin to mmax u times, or in the case where there are more makers than
n, take u samples of n from the index values of the makers.

12

define sample construction functions
maker_list_gen <- function(m, mmin, mmax, u, n) {

if (m <= n) {
rep.int(mmin:mmax, u)

} else {
c(replicate(u, sample(mmin:mmax, n)))

}
}

Given the number of makers (m), the minimum row index for the set of buyers (umin), the maximum row
index for the buyers (umax), and the maximum number of candidates per buyer (n), the user_list_gen
creates a vector of buyer row indexes of the correct length to match each set of maker candidates, being the
minimum of n and the number of makers.

user_list_gen <- function(m, umin, umax, n) {
c(sapply(umin:umax, function(x) rep(x, min(m, n))))

}

The function maker_user_choiceset calls the maker_user_choiceset to create a list of candidate suppliers for
a specific SCTG commodity group. Within this function, the makers_sctg step, defines all the destinations
zones in which their potential buyer matches are located. Next, the combinations of NAICS make and
use classifications are added to create a table of all of the makers linked to all combinations of destination
zone and destination industry type. The makers_cats and user_cats steps in the function indicates the
number and row indices of destination zone, make, and use combinations. The output of these steps are then
merged to create a single take of destination zone, make, and use combinations and indexes into the pairs
and makers_sctg tables.

For each row in the mu_cats table, the function calls the maker_list_gen function (defined above) to select
up to 10 candidate suppliers for each buyer. The function also calls the user_list_gen function to enumerate
a list of row indexes from the pairs table to allow a match table with the candidates to be constructed.
Finally, the candidate makers and buyers based on the two sets of row indexes are combined a subset of fields
is selected that is from the pairs table for the utility calculation.

function to build the set of candidate suppliers for this SCTG, for the
set of NAICS_Make, NAICS_Use and FAFZONE combinations
maker_user_choiceset <- function(sctg) {

makers_sctg <- merge(makers[SCTG == sctg,], faf, by = c("SCTG", "oFAFZONE"),
allow.cartesian = TRUE)

makers_sctg <- merge(makers_sctg, unique(pairs[J(sctg)][, list(dFAFZONE,
NAICS6_Make, NAICS6_Use)]), by = c("dFAFZONE", "NAICS6_Make"), allow.cartesian = TRUE)

setkey(makers_sctg, dFAFZONE, NAICS6_Make, NAICS6_Use)

13

makers_cats <- makers_sctg[, list(m = .N, mmin = min(.I), mmax = max(.I)),
by = list(dFAFZONE, NAICS6_Make, NAICS6_Use)]

users_cats <- pairs[J(sctg), list(u = .N, umin = min(.I), umax = max(.I)),
by = list(dFAFZONE, NAICS6_Make, NAICS6_Use)]

mu_cats <- merge(makers_cats, users_cats, c("dFAFZONE", "NAICS6_Make", "NAICS6_Use"))
maker_list <- unlist(lapply(1:nrow(mu_cats), function(x) maker_list_gen(mu_cats$m[x],

mu_cats$mmin[x], mu_cats$mmax[x], mu_cats$u[x], 10)))
user_list <- unlist(lapply(1:nrow(mu_cats), function(x) user_list_gen(mu_cats$m[x],

mu_cats$umin[x], mu_cats$umax[x], 10)))
muchoices <- cbind(makers_sctg[maker_list,], pairs[user_list, list(dValEmp,

dBusID, dSWTAZ, dCOUNTY, dSTATE, desizecat, dEmp)])
}

Following the function to build the set of candidate suppliers by SCTG, the next step is to execute the
supplier selection for each particular commodity group. The function first creates a uniformly distributed
choice value in the choiceset (temprand) and if the origin FAF Zone is international, increases the choice
value by 10% and if the origin state is Alabama, Florida, or Georgia increases the choice value by 25%. Next,
the supplier selection parmaters are provided (Figure 3) and then selects the maker with highest utility index
(the last line of the code chunk below) so that the best maker for each NAICS6_Make industry is available
to each user.

Figure 3. Supplier Selection Parameters

function to execute supplier selection for a particular cmmodity group
do_suppsel_sctg <- function(sctg) {

print(sctg)

muchoices <- maker_user_choiceset(sctg) #create choiceset
setkey(muchoices, oSWTAZ, dSWTAZ)
muchoices <- merge(muchoices, tazgcd) #add TAZ to TAZ distances for all possible pairs

calculate supplier scores
muchoices[, `:=`(temprand, runif(.N))]
muchoices[oFAFZONE %in% 801:808, `:=`(temprand, 1.1 * temprand)]
muchoices[oSTATE %in% c(1, 12, 13), `:=`(temprand, 1.25 * temprand)]
muchoices[desizecat <= 2, `:=`(idx, 0.25 * temprand + 0.2 * (oesizecat <=

2) + 0.2 * (oesizecat %in% 3:4) + 0.4 * (oesizecat > 4) - 0.4 * (GCD >
1509) - 0.3 * (GCD <= 1509 & GCD > 595) - 0.2 * (GCD <= 595 & GCD >=
150) + 0.1 * (GCD == 0))]

muchoices[desizecat %in% 3:4, `:=`(idx, 0.25 * temprand + 0.2 * (oesizecat <=
2) + 0.6 * (oesizecat %in% 3:4) + 0.6 * (oesizecat > 4) - 0.2 * (GCD >

14

1509) - 0.1 * (GCD <= 1509 & GCD > 595) - 0.05 * (GCD <= 595 & GCD >=
150) + 0.1 * (GCD == 0))]

muchoices[desizecat > 4, `:=`(idx, 0.25 * temprand + 0.4 * (oesizecat <=
2) + 0.6 * (oesizecat %in% 3:4) + 0.6 * (oesizecat > 4) - 0.1 * (GCD >
1509) - 0.05 * (GCD <= 1509 & GCD > 595) + 0.1 * (GCD == 0))]

retain best maker for each NAICS6_Make for each users
muchoices <- muchoices[muchoices[, .I[which.max(idx)], by = list(NAICS6_Make,

dBusID)]$V1, list(SCTG, NAICS6_Make, oBusID, dBusID, GCD)]
}

The code then loops over the unique SCTG commodities and returns the resulting Selected pairs. The code
creates a table of selected suppliers for each input required by each buying business. The lapply() function
loops over each unique commodity in the pairs table and calls the do_suppsel_sctg function (defined above)
to build a set of selected suppliers for each commodity.

selected_Suppliers <- rbindlist(lapply(sort(unique(pairs$SCTG)), do_suppsel_sctg))

pairs <- merge(pairs, selected_Suppliers, by = c("NAICS6_Make", "SCTG", "dBusID"))

Finally, remaining supplier characteristics from the makers table is merged with the above table, resulting in
a complete table of buyer-supplier firm pairs by origin and destination TAZ

pairs <- merge(makers[, list(oBusID, oSWTAZ, oCOUNTY, oSTATE, oFAFZONE, oesizecat,
oEmp)], pairs, by = "oBusID")

Output Files

The following output files are generated after the supplier selection R program is run.

• Output/F_02_suppsel_firmpairsbylocation.csv
• Output/F_02_suppsel_firmpairsgcddist.csv

15

• Output/F_02_suppsel_firmpairsbysegment.csv
• Output/F_02_suppsel_firmpairsbyflsegment.csv
• Output/F_02_suppsel_firmpairsbysctg.csv
• Output/F_02_suppsel_firmpairsbysctgbysegmentdom.csv
• Output/F_02_suppsel_firmpairsbysctgbysegmentimp.csv
• Output/F_02_suppsel_firmpairsbysctgbysegmentexp.csv
• Output/F_02_suppsel_firmpairsbyfaforigin.csv
• Output/F_02_suppsel_firmpairsbyfafdest.csv
• Output/F_02_suppsel_firmpairsbyfafod.csv
• Output/F_02_suppsel_firmpairsbyfafodsctg.csv
• Output/F_02_suppsel_firmpairsbyflcounty.csv

FAF Flow Apportionment

This is a relatively straightforward R program which allocates annual commodity flows to the producer
consumer pairs created after Supplier Selection.

The code first merges the supplier-buyer pair with the FAF data by SCTG commodity and O–D pair.

pairs <- merge(pairs, faf[, list(SCTG, oFAFZONE, dFAFZONE, tons, value)], by = c("SCTG",
"oFAFZONE", "dFAFZONE"))

The code then estimates the value consumed by a firm based on its employee size and then calculates the
proportion of the value for a particular zonal pair and commodity. This proportion is then used to allocate
flows (by tons and value) to each buyer-supplier pair.

Estimate the value consumed by a firm based on its employee size
pairs[, `:=`(dValue, dEmp * dValEmp)]
pairs[, `:=`(sdValue, sum(dValue)), by = list(SCTG, oFAFZONE, dFAFZONE)]

Calculate the proportion of dValue for a particular zonal pair and SCTG
pairs[, `:=`(pdValue, dValue/sdValue)]

Use the proportion to allocate flows (both in terms of value and tons) to
each of the buyer-supplier pairs.
pairs[, `:=`(tons, tons * pdValue)]
pairs[, `:=`(value, value * pdValue)]

In order to ensure that the sum of tons by FAF zone pair in the pairs dataset matches that in the FAF data,
it is necessary to:

1. Summarize the buyer-supplier pairs by OD and calculate a scale for each OD

16

pairs_od <- pairs[, list(modtons = sum(tons), modvalue = sum(value)), by = list(oFAFZONE,
dFAFZONE)]

pairs_od <- merge(pairs_od, faf[, list(tfaf = sum(tons), vfaf = sum(value)),
by = list(oFAFZONE, dFAFZONE)], by = c("oFAFZONE", "dFAFZONE"), all = T)

pairs_od[, `:=`(ftons, tfaf/modtons)]
pairs_od[, `:=`(fvalue, vfaf/modvalue)]

2. Scale the factoro account for missing FAF-FAF ODs

pairs_od[, `:=`(ftons, ftons * sum(pairs_od$tfaf)/sum(pairs_od[!is.na(ftons)]$tfaf))]
pairs_od[, `:=`(fvalue, ftons * sum(pairs_od$vfaf)/sum(pairs_od[!is.na(fvalue)]$vfaf))]

3. And finally merge it back to the buyer-supplier pair dataset.

pairs <- merge(pairs, pairs_od[, list(oFAFZONE, dFAFZONE, ftons, fvalue)], by = c("oFAFZONE",
"dFAFZONE"), all.x = TRUE)

pairs[, `:=`(utons, tons)]
pairs[, `:=`(uvalue, value)]
pairs[, `:=`(tons, utons * ftons)]
pairs[, `:=`(value, uvalue * fvalue)]

Output Files

The following output files are produced after this R program is run:

• Output/F_03_fafflow_tonsbysegment.csv

17

• Output/F_03_fafflow_tonsbyflsegment.csv
• Output/F_03_fafflow_tonsbysctg.csv
• Output/F_03_fafflow_tonsbysctgbysegmentdo
• Output/F_03_fafflow_tonsbysctgbysegmentim
• Output/F_03_fafflow_tonsbysctgbysegmentex
• Output/F_03_fafflow_tonsbyfaforigin.csv
• Output/F_03_fafflow_tonsbyfafdest.csv
• Output/F_03_fafflow_tonsbyfafod.csv
• Output/F_03_fafflow_tonsbyfafodsctg.csv
• Output/F_03_fafflow_tonsbyflcounty.csv

Distribution Channel

This program takes as inputs the food and manufacturing ASC and variable coefficients and are shown in
Figures 4 and 5 respectively. There is a lack of correspondence between the values shown in Figure 4 and 5
and tables 16 and 17 on page 57 in the report and it is recommended that the complete model specifications
for food and manufactured products be included in the final version of the report.

18

Figure 4. Distribution Channel Model Specification for Food Products

19

Figure 5. Distribution Channel Model Specification for Manufactured Products

This program is used to identify the distribution channel used by each producer-consumer pair. The first
step in this program is to create dummy variables to identify firms with employees by different categories
(less than or equal to 49, 50 to 199, and more than 200). It also creates dummies (based on 2 digit NAICS
[substr(NAICS6_Make,1,2)]) for manufacturing (NAICS 31-33), transportation and warehousing (NAICS
48-49), and wholesale trade (NAICS 42). Note that the code flags NAICS 48 and 49 as wholesale trade as
well.

20

pairs[dEmp <= 49, `:=`(emple49, 1)]
pairs[dEmp >= 50 & dEmp <= 199, `:=`(emp50t199, 1)]
pairs[dEmp >= 200, `:=`(empge200, 1)]

pairs[, `:=`(NAICS6_Make2, substr(NAICS6_Make, 1, 2))]
pairs[NAICS6_Make2 %in% 31:33, `:=`(mfgind, 1)]
pairs[NAICS6_Make2 %in% 48:49, `:=`(trwind, 1)]
pairs[NAICS6_Make2 %in% c(42, 48, 49), `:=`(whind, 1)]

pairs[, `:=`(NAICS6_Use2, substr(NAICS6_Use, 1, 2))]
pairs[NAICS6_Use2 %in% 31:33, `:=`(mfgind, 1)]
pairs[NAICS6_Use2 %in% 48:49, `:=`(trwind, 1)]
pairs[NAICS6_Use2 %in% c(42, 48, 49), `:=`(whind, 1)]

The code then renames GCD as Distance and adds the FAMESCTG category to pairs for comparison with
calibration targets.

setnames(pairs, "GCD", "Distance")

add the FAMESCTG category to pairs for comparison with calibration targets
pairs[, `:=`(CATEGORY, c_sctg_cat$FAMELetter[SCTG])]

The code then creates a correspondence table (calcats) between the choice model alternatives and target
categories in the distribution channel model.

calcats <- data.table(CHOICE = c("0", "1", "2+", "2+"), CHID = 1:4)

CHOICE CHID
0 1
1 2
2+ 3
2+ 4

21

The next step is to apply choice model of distribution channel and iteratively adjust the ASCs. Note that
the model estimated for manufactured products is applied to all other SCTG commodities. The code below
leads to 1,389,331 unique combinations of Category (where category is the 43 FAF commodities grouped
into 11 classes from A to K) and Variable for food and 48 unique combinations of Category and Variable for
manufacturing products.

if (nrow(pairs[SCTG %in% c(1:9)]) > 0) {
sorted on vars, calibration coefficients, so simulated choice is ordered
correctly
setkeyv(pairs, c("CATEGORY", unique(food$VAR[food$TYPE == "Variable"])))
pairs_food <- pairs[SCTG %in% c(1:9), c("CATEGORY", unique(food$VAR[food$TYPE ==

"Variable"])), with = F]
unique combinations of model coefficients
df <- pairs_food[, list(Start = min(.I), Fin = max(.I)), by = eval(c("CATEGORY",

unique(food$VAR[food$TYPE == "Variable"])))]
add 1s for constants to each group in df
df[, `:=`(eval(unique(food$VAR[food$TYPE == "Constant"])), 1)]
print(paste(nrow(df), "unique combinations"))

if (model$modelmode == "Calibration") {
modcoeffs <- list()
pairs[SCTG %in% c(1:9), `:=`(distchannel, predict_logit(df, food, calibration,

calcats, iter = 4))]
write.csv(modcoeffs[[length(modcoeffs)]], file = "./Parameters/F_model_distchannel_food_cal.csv",

row.names = FALSE)
rm(modcoeffs)

} else {
pairs[SCTG %in% c(1:9), `:=`(distchannel, predict_logit(df, food))]

}

rm(df, pairs_food)
}

A screenshot of the pairs_food file is shown below.

if (nrow(pairs[!SCTG %in% c(1:9)]) > 0) {
sorted on vars so simulated choice is ordered correctly
setkeyv(pairs, c("CATEGORY", unique(mfg$VAR[mfg$TYPE == "Variable"])))
pairs_mfg <- pairs[!SCTG %in% c(1:9), c("CATEGORY", unique(mfg$VAR[mfg$TYPE ==

22

"Variable"])), with = F]
unique combinations of model coefficients
df <- pairs_mfg[, list(Start = min(.I), Fin = max(.I)), by = eval(c("CATEGORY",

unique(mfg$VAR[mfg$TYPE == "Variable"])))]
add 1s for constants to each group in df
df[, `:=`(eval(unique(mfg$VAR[mfg$TYPE == "Constant"])), 1)]
print(paste(nrow(df), "unique combinations"))

if (model$modelmode == "Calibration") {
modcoeffs <- list()
pairs[!SCTG %in% c(1:9), `:=`(distchannel, predict_logit(df, mfg, calibration,

calcats, iter = 4))]
write.csv(modcoeffs[[length(modcoeffs)]], file = "./Parameters/F_model_distchannel_mfg_cal.csv",

row.names = FALSE)
rm(modcoeffs)

} else {
pairs[!SCTG %in% c(1:9), `:=`(distchannel, predict_logit(df, mfg))]

}

rm(df, pairs_mfg)
}

A screenshot of the pairs_mfg file is shown below.

The final step in the distribution process is the code is the distribution channel identified for each commodity
category. Figure 6 shows the four different distribution channels identified by commodity category and Figure
7 shows a screenshot of the distribution channel for each producer-consumer pair.

23

Figure 6. Distribution Channels

Figure 7. Distribution Channel by Producer-Consumer Pair

Output Files

The code generates the following output files.

• Output/F_04_distchannel_tradetypefreq.csv
• Output/F_04_distchannel_tradetypepct.csv
• Output/F_04_distchannel_famesctgfreq.csv
• Output/F_04_distchannel_famesctgpct.csv
• Output/F_04_distchannel_sctgfreq.csv

24

• Output/F_04_distchannel_sctgpct.csv

Shipment Size

In this step, the annual goods flow between buyer-supplier firms pairs are broken down into individual
shipments. The shipment size (weight) and the corresponding number of shipments per year are determined.
Shipment size affects the mode used to transport the shipment. This framework is not designed to optimize
the shipments or identify the logistics of how shipments may be combined to make a truckload or rail delivery.
The first step in the code computes the log distances and then creates dummy variables for each of the first
three distribution channels. It then creates dummies for the NAICS_Use variable for Arts, Entertainment,
Recreation, Accomodation, Food Services, and other Services (except Public Administration) [NAICS 70 to
89], Construction and Transportation/Warehousing [NAICS 23, 48-49], and Mining, Manufacturing, Wholesale
and Retail trades [NAICS 21,31 to 45].

pairs[, `:=`(log_dist, log10(Distance + 1))]
pairs[, `:=`(c("DISTCHAN", "DISTCHAN_2", "DISTCHAN_3", "SIC1", "SIC2", "SIC3",

"hightons", "highval"), 0)]
pairs[distchannel == 1, `:=`(DISTCHAN, 1)]
pairs[distchannel == 2, `:=`(DISTCHAN_2, 1)]
pairs[distchannel == 3, `:=`(DISTCHAN_3, 1)]
pairs[NAICS6_Use2 %in% 70:89, `:=`(SIC1, 1)]
pairs[NAICS6_Use2 %in% c(23, 48:49), `:=`(SIC2, 1)]
pairs[NAICS6_Use2 %in% c(21, 31:45), `:=`(SIC3, 1)]
pairs[tons > 5, `:=`(hightons, 1)]
pairs[, `:=`(unitval, value/tons)]
pairs[unitval > 10000, `:=`(highval, 1)]

develop correspondences and clean up calibration data correspondence
between choice model alts and target categories in the shipment size model
calcats <- data.table(CHOICE = 1:9, CHID = c(rep(1, 5), 2, rep(3, 3)))

25

calibration <- calibration[!SCTG %in% c(0, 99), list(SCTG, WeightCategory, TonsPct)]
calibration[is.na(TonsPct) | TonsPct < 1e-04, `:=`(TonsPct, 1e-04)]
setnames(calibration, c("SCTG", "WeightCategory", "TonsPct"), c("CATEGORY",

"CHOICE", "TARGET"))

This step basically assigns an initial value of 0 for a new variable called ship_size.

pairs[, `:=`(ship_size, 0L)]

Similar to the Distribution channel step, applies the choice model of shipment size and interatively adjusts
the alternative specific constant. The code below leads to 1,645,694 unique combinations of Category (where
category is the 43 FAF commodities grouped into 11 classes from A to K) and Variable for food and 13,522,746
unique combinations of Category and Variable for manufacturing products.

Apply choice model of shipment size and iteratively adjust the ascs The
model estimated for mfg products is applied to all other SCTG commodities
if (nrow(pairs[SCTG %in% c(1:9)]) > 0) {

sorted on vars, calibration coefficients, so simulated choice is ordered
correctly
setkeyv(pairs, c("SCTG", unique(food$VAR[food$TYPE == "Variable"])))
pairs_food <- pairs[SCTG %in% c(1:9), c("SCTG", unique(food$VAR[food$TYPE ==

"Variable"])), with = F]
unique combinations of model coefficients
df <- pairs_food[, list(Start = min(.I), Fin = max(.I)), by = eval(c("SCTG",

unique(food$VAR[food$TYPE == "Variable"])))]
add 1s for constants to each group in df
df[, `:=`(eval(unique(food$VAR[food$TYPE == "Constant"])), 1)]
setnames(df, "SCTG", "CATEGORY")

26

print(paste(nrow(df), "unique combinations"))

if (model$modelmode == "Calibration") {
modcoeffs <- list()
pairs[SCTG %in% c(1:9), `:=`(ship_size, predict_logit(df, food, calibration,

calcats, pairs[SCTG %in% c(1:9)]$tons, 4))]
write.csv(modcoeffs[[length(modcoeffs)]], file = "./Parameters/F_model_shipsize_food_cal.csv",

row.names = FALSE)
rm(modcoeffs)

} else {
pairs[SCTG %in% c(1:9), `:=`(ship_size, predict_logit(df, food))]

}

rm(df, pairs_food)
}

if (nrow(pairs[!SCTG %in% c(1:9)]) > 0) {
sorted on vars so simulated choice is ordered correctly
setkeyv(pairs, c("SCTG", unique(mfg$VAR[mfg$TYPE == "Variable"])))
pairs_mfg <- pairs[!SCTG %in% c(1:9), c("SCTG", unique(mfg$VAR[mfg$TYPE ==

"Variable"])), with = F]
unique combinations of model coefficients
df <- pairs_mfg[, list(Start = min(.I), Fin = max(.I)), by = eval(c("SCTG",

unique(mfg$VAR[mfg$TYPE == "Variable"])))]
setnames(df, "SCTG", "CATEGORY")
add 1s for constants to each group in df
df[, `:=`(eval(unique(mfg$VAR[mfg$TYPE == "Constant"])), 1)]
print(paste(nrow(df), "unique combinations"))

if (model$modelmode == "Calibration") {
modcoeffs <- list()
pairs[!SCTG %in% c(1:9), `:=`(ship_size, predict_logit(df, mfg, calibration,

calcats, pairs[!SCTG %in% c(1:9)]$tons, 4))]
write.csv(modcoeffs[[length(modcoeffs)]], file = "./Parameters/F_model_shipsize_mfg_cal.csv",

row.names = FALSE)
rm(modcoeffs)

} else {
pairs[!SCTG %in% c(1:9), `:=`(ship_size, predict_logit(df, mfg))]

}

rm(df, pairs_mfg)
}

If the shipment weight is between 1,000 to 9,999 lbs, it finds the index of the probability threshold and assigns
it a specific weight. It is not clear how the numeric vector of probabilities was determined. If the shipment
size is less than 1,000 or greater than 10,000 lbs, then based on the shipment size and SCTG category it
chooses the weight to assign based on the targets from the calibration file.

Simulate the actual shipment weight The probabilities are based on data
from the CFS and texas
pairs[, `:=`(temprand, runif(.N))]
pairs[, `:=`(weight, 0L)]
pairs[, `:=`(weight, as.double(weight))]

27

pairs[ship_size == 2, `:=`(weight, c(1500L, 2500L, 3500L, 4500L, 5500L, 6500L,
7500L, 8500L, 9500L)[1 + findInterval(temprand, c(0.23, 0.44, 0.59, 0.66,
0.74, 0.79, 0.86, 0.92))])]

for (i in unique(pairs$SCTG)) {
pairs[ship_size == 1 & SCTG == i, `:=`(weight, c(50L, 75L, 300L, 625L, 875L)[1 +

findInterval(temprand, cumsum(calibration$TARGET[calibration$CATEGORY ==
i & calibration$CHOICE %in% 1:5])/sum(calibration$TARGET[calibration$CATEGORY ==
i & calibration$CHOICE %in% 1:5]))])]

pairs[ship_size == 3 & SCTG == i, `:=`(weight, c(30000L, 75000L, 150000L)[1 +
findInterval(temprand, cumsum(calibration$TARGET[calibration$CATEGORY ==

i & calibration$CHOICE %in% 7:9])/sum(calibration$TARGET[calibration$CATEGORY ==
i & calibration$CHOICE %in% 7:9]))])]

}
check if shipment size is > total for year, if so reduce so all in one
shipment
pairs[tons * 2000 < weight, `:=`(weight, round(tons * 2000))]

The final step from this model is the shipment tonnage by shipment size and distribution channel. Figure 8
shows the Weight by shipment size and distribution channel.

Figure 8. Shipment Weight by Shipment Size and Distribution Channel for each Producer-
Consumer Pair

Output Files

The following output files are generated after running the shipment size model:

• Output/F_05_shipsize_sizegroups.csv
• Output/F_05_shipsize_tradetype.csv
• Output/F_05_shipsize_sizecommoditygroups.csv

Mode Path Selection

This step assigns a mode for shipments transported between each buyer-supplier pair. There are four primary
modes (road, rail, air, and water) included in the mode choice model. Networks of all four modes (i.e., road,
rail, water, air) for the United States are used.
The modes and transfer locations on the shipment paths are determined based on the travel time, cost,
characteristics of the shipment (e.g., bulk natural resources, finished goods), characteristics of the distribution

28

channel (e.g., whether the shipment is routed via a warehouse, consolidation, or distribution center), and
whether the shipment includes an intermodal transfer (e.g. truck-rail-truck). A mode and path (from a set of
feasible modes and paths) is chosen, one that would have the least annual transport and logistics cost using a
two-step process:

• First, a set of feasible paths between each O-D pair is enumerated.
• Second, a reasonable set of parameters is applied to the path skims to generate total annual transport

and logistics costs for each combination of path and mode.

In calculating the total annual costs for each pair of seller and buyer, supply chain and inventory control
costs are considered and incorporated to account for the inventory-associated costs.

The first step in the code is to determine mode paths by truck, rail, and water. The air portion is commented
out in the code.

Truck only - Highway.csv: oRNODE, dRNODE, Time, Dist oRNODE 1 13283,
dRNODE 1 13283
setnames(truck, c("oRNODE", "dRNODE", "trucktime", "truckdist"))
setkey(truck, oRNODE, dRNODE)
save this to an Rdata file for quicker loading
save(truck, file = file.path(model[["scendir"]], "Output/F_Highway.Rdata"))

Intermodal - Rail - IntermodalRail.csv: oRNODE, dRNODE, rail time, rail
dist oRNODE 10225 13282, dRNODE 10225 13282
setnames(rail, c("oRNODE", "dRNODE", "railtime", "raildist"))
setkey(rail, oRNODE, dRNODE)

Intermodal - Water - IntermodalWater.csv: oRNODE, dRNODE, water time,
water dist oRNODE 9665 13254, dRNODE 9665 13254
setnames(water, c("oRNODE", "dRNODE", "watertime", "waterdist"))
setkey(water, oRNODE, dRNODE)

TODO: need to read in air data and airport locations and build an air skim
here!

air > names(air) [1] 'oAirport' 'dAirport' 'T100Tons'

The next step in the process is to match TAZ/NODE numbering with skims by renaming the variable names.
Figures 9 and 10 show the input and renamed node and zone numbering files respectively.

29

Figure 9. Input Node and Zone

Figure 10. Renamed Node and Zone

setnames(c_onode_nnode, c("Old_Node", "New_Node"), c("MNODE", "RNODE"))
setnames(c_onode_swtaz, "Old_Node", "MNODE")

Following this, the skim information is joined to the output from the Shipment Size step (see Figure 8).
Following this the port gateway and distribution center skims are developed. The port gateway skims select
the truck or truck-rail skims where one end is an intermodal connected to a gateway port and the other end
is a domestic zone with export/import movement (i.e. opposite end is overseas) or has a connection to Hawaii.
Figure 11 shows the distribution center skims.

30

Figure 11. Distribution Center Skims
The next step is to calculate the time and cost of each mode path alternative. Each shipper-receiver pair
selects one transport & logistics path for its shipping needs based on annual transport & logistics costs. The
following mode paths are calculated:

• FTL Direct
• LTL Direct
• LTL-Air-LTL
• FTL-Carload-FTL
• LTL-IMX-LTL
• FTL-IMX-FTL
• FTL-Water-FTL
• FTL-NoTransload-Port (40’ container)
• LTL-NoTranload-Port (40’ container)
• FTL-Transload-Port (53’ trailer)
• LTL-Transload-Port (53’ trailer)
• FTL-Carload-Port
• LTL-IMX-Port
• FTL-IMX-Port
• LTL-DC-LTL
• LTL-DC-FTL-DC-LTL
• FTL-DC-FTL
• FTL-DC-FTL-DC-FTL

Following this, the mode path alternative with the lowest logistics cost is selected. Figure 12 shows the
output for one commodity (Cereal Grains), and includes both the imput and computed parameters and all
157 variables that results from the mode path selection step.

31

Figure 12. Mode Path Selection for Cereal Grains with Lowest Logistics Cost

Output Files

The following files are produced from the mode path selection program:

• Output/F_06_modepath_allcommodities.csv
• Output/F_06_modepath_allmodesloctonmiles.csv
• Output/F_06_modepath_allmodesloctonmilesbysctg.csv
• Output/F_06_modepath_allmodesloctons.csv
• Output/F_06_modepath_allmodesloctonsbysctg.csv
• Output/F_06_modepath_allmodeslocvalue.csv
• Output/F_06_modepath_allmodeslocvaluebysctg.csv
• Output/F_06_modepath_dcountytonmilesair.csv
• Output/F_06_modepath_dcountytonmilesrail.csv
• Output/F_06_modepath_dcountytonmilestruck.csv
• Output/F_06_modepath_dcountytonmileswater.csv

32

• Output/F_06_modepath_dcountytonsair.csv
• Output/F_06_modepath_dcountytonsrail.csv
• Output/F_06_modepath_dcountytonstruck.csv
• Output/F_06_modepath_dcountytonswater.csv
• Output/F_06_modepath_dcountyvalueair.csv
• Output/F_06_modepath_dcountyvaluerail.csv
• Output/F_06_modepath_dcountyvaluetruck.csv
• Output/F_06_modepath_dcountyvaluewater.csv
• Output/F_06_modepath_domesticbysctgbymode.csv
• Output/F_06_modepath_domesticbysctgbysegmentbymode.csv
• Output/F_06_modepath_domesticbysegmentbymode.csv
• Output/F_06_modepath_exportbysctgbymode.csv
• Output/F_06_modepath_exportbysctgbysegmentbymode.csv
• Output/F_06_modepath_exportbysegmentbymode.csv
• Output/F_06_modepath_importbysctgbymode.csv
• Output/F_06_modepath_importbysctgbysegmentbymode.csv
• Output/F_06_modepath_importbysegmentbymode.csv
• Output/F_06_modepath_loctonmilesbymode.csv
• Output/F_06_modepath_loctonsbymode.csv
• Output/F_06_modepath_locvaluebymode.csv
• Output/F_06_modepath_modetonsbysctgdffl.csv
• Output/F_06_modepath_modetonsbysctgdtfl.csv
• Output/F_06_modepath_modetonsbysctgeffl.csv
• Output/F_06_modepath_modetonsbysctgitfl.csv
• Output/F_06_modepath_modetonsbysctgwfl.csv
• Output/F_06_modepath_ocountytonmilesair.csv
• Output/F_06_modepath_ocountytonmilesrail.csv
• Output/F_06_modepath_ocountytonmilestruck.csv
• Output/F_06_modepath_ocountytonmileswater.csv
• Output/F_06_modepath_ocountytonsair.csv
• Output/F_06_modepath_ocountytonsrail.csv
• Output/F_06_modepath_ocountytonstruck.csv
• Output/F_06_modepath_ocountytonswater.csv
• Output/F_06_modepath_ocountyvalueair.csv
• Output/F_06_modepath_ocountyvaluerail.csv
• Output/F_06_modepath_ocountyvaluetruck.csv
• Output/F_06_modepath_ocountyvaluewater.csv
• Output/F_06_modepath_portexptonsbysctgfl.csv
• Output/F_06_modepath_portimpexptonsfl.csv
• Output/F_06_modepath_portimptonsbysctgfl.csv

Trip Table Development

As a first step, this sub-model reads in the payload factors from a CSV file (see Figure 13) and the code
below transforms from a wide to long format it based on distance and SCTG (Figure 14). The source of
these payload factors is not documented in the code or report. The process is repeated for empty trucks as
well.

33

Figure 13. Input Payload File

payload factor is based on distance and SCTG commodity
payload <- reshape(payload, varying = list(paste0("Dist", c(0, 50, 100, 200,

500))), times = c(0, 50, 100, 200, 500), idvar = "SCTG", direction = "long",
drop = "Commodity")

setnames(payload, c("time", "Dist0"), c("Distance", "PayFactor"))

Figure 14. Transformed Payload File

The next step is to Seperate mode-path routing into separate zone to zone trips. For each commodity, the
shipments by mode combinations (e.g. truck-rail-truck) are split into separate truck and rail trips. This
requires knowing the zone that the intermodal transfer occurs. The output is a set of shipment trips from an
OTAZ to DTAZ for each leg of the trip tagged with mode and the shipment characteristics. Figures 15 and
16 shows the mode-path routing for truck only and truck-air-truck trips respectively.

for (i in 1:length(sctg)){

print(i)
load(file.path(model[["scendir"]],paste0("Output/F_Pairs",sctg[i],".Rdata")))

#Truck only trips
totrips <- pairs_sctg[MinPath %in% 1:2 & !is.na(totruckdist),list(shipID,oRNODE,dRNODE,SCTG,tons,value,weight,MinPath,totrucktime,totruckdist)]

34

setnames(totrips,c("totrucktime","totruckdist"),c("trucktime","truckdist"))
totrips[,c("oType","dType"):=list(1,2)] #business pick up to business delivery

#truck time and cost will be joined on for the skims for the other paths once all of the individual trips are broken apart
#Truck-air-truck trips
tatrips <- pairs_sctg[MinPath == 3,list(shipID,oRNODE,dRNODE,TARNODE,ATRNODE,SCTG,tons,value,weight,MinPath,taairtime,taairdist)]
airtrips <- tatrips[,list(shipID,TARNODE,ATRNODE,SCTG,tons,value,weight,MinPath,taairtime,taairdist)]
setnames(airtrips,c("TARNODE","ATRNODE","taairtime","taairdist"),c("oRNODE","dRNODE","triptime","tripdist"))
airtrips[,c("oType","dType"):=list(13,14)] #airport truck/air to airport air/truck
airtrips[,ModeTrip:=1] #Air (1-Air,2-Rail, 3-Truck, 4-Water)

tatrips_ot <- tatrips[,list(shipID,oRNODE,TARNODE,SCTG,tons,value,weight,MinPath)]
setnames(tatrips_ot,"TARNODE","dRNODE")
tatrips_ot[,c("oType","dType"):=list(1,13)] #business pick up to airport truck/air

tatrips_td <- tatrips[,list(shipID,ATRNODE,dRNODE,SCTG,tons,value,weight,MinPath)]
setnames(tatrips_td,"ATRNODE","oRNODE")
tatrips_td[,c("oType","dType"):=list(14,2)] #airport air/truck to business delivery

tatrips <- rbind(tatrips_ot,tatrips_td)
rm(tatrips_ot,tatrips_td)

Figure 15. Truck Only Trips

35

Figure 15. Truck-Air-Truck Trips

After splitting out the trips separately by mode, the model then converts shipments trip to vehicle trips.

trucktrips[, `:=`(Distance, c(0, 50, 100, 200, 500)[findInterval(tripdist, c(0,
50, 100, 200, 500))])]

trucktrips <- merge(trucktrips, payload, by = c("SCTG", "Distance"), all.x = TRUE)

trucktrips[, `:=`(annualtrucks, tons/PayFactor)]

Add distance categories to modal trips too
modaltrips[, `:=`(Distance, c(0, 50, 100, 200, 500)[findInterval(tripdist, c(0,

50, 100, 200, 500))])]

Following this, the model first divides truck trips into vehicle classes and then adds the empty truck trips.
Next, the model converts truck trips to time periods, samples from the annual trips to create a daily sample
(code below)

trucktrips[, `:=`(dailyfreq, annualtrucks/triptable$annualfactor)]
trucktrips[dailyfreq >= 1, `:=`(trip, round(dailyfreq))]
trucktrips[, `:=`(temprand, runif(.N))]
trucktrips[dailyfreq < 1, `:=`(trip, ifelse(temprand < dailyfreq, 1, 0))]

Finally, the trips are aggregated into trip tables and county and state, location, and florida segment are
added to the trip table.

Output Files

The following output files are produced from the trip table model:

• Output/F_07_trip_ostate.csv
• Output/F_07_trip_dstate.csv
• Output/F_07_trip_odstate.csv
• Output/F_07_trip_ocounty.csv

36

• Output/F_07_trip_dcounty.csv
• Output/F_07_trip_odcounty.csv
• Output/F_07_trip_odistrict.csv
• Output/F_07_trip_ddistrict.csv
• Output/F_07_trip_oddistrict.csv
• Output/F_07_trip_tt_county.csv
• Output/F_07_trip_tt_county_heavy.csv
• Output/F_07_trip_tt_county_medium.csv
• Output/F_07_trip_tt_minerals.csv
• Output/F_07_trip_tt_minerals_heavy.csv
• Output/F_07_trip_tt_minerals_medium.csv
• Output/F_07_trip_tt_otype_dtype.csv
• Output/F_07_trip_lengthdist.csv
• Output/F_07_trip_lengthdist_heavy.csv
• Output/F_07_trip_lengthdist_medium.csv
• Output/F_07_trip_lengthdist_sctg.csv

37

	Model Management/Flow Scripts
	Firm Synthesis
	Input Files
	Output Files

	Supplier Selection
	Output Files

	FAF Flow Apportionment
	Output Files

	Distribution Channel
	Output Files

	Shipment Size
	Output Files

	Mode Path Selection
	Output Files

	Trip Table Development
	Output Files

