Modeling Emerging Technology and Travel Behavior

presented by Marty Milkovits

December 7, 2016

- Review Emerging Technology, Trends, and Travel Behavior Study Background and Objectives
- Scenarios Developed and Implementation Approach
- Travel Behavior Scenario: Millennials Behave Differently
- Technology Scenario: Autonomous Vehicles
- Next Steps

Background and Objectives

Background

- Models are applied to gauge the demands for and the sizes of new facilities
- Emerging technologies will disrupt travel behaviors.
- Three phases
 - Review of relevant literature
 - Identify key parameters and data needs
 - Compile regional, national trends, and discuss potential scenario testing

Objectives

- Compile information on emerging technologies from identified sources and case studies.
- Gather regional and national trends in a manner to support discussion of potential scenario testing.
- Provide definition to specific scenarios that could be tested with the SERPM 7 model to support policy analysis.
- The findings can be applied to test and shape policies in regional and MPO LRTPs to achieve their goals and objectives. It can also help to project more accurate demands for projects.
- Evaluate the SERPM 7 model's capability to test future scenarios and inform development of SERPM 8.

Development and Implementation Approach

Scenario Development

Identified Potential Scenarios for Modeling the Travel Behavior Impact of:

- Changing demographics
- Emerging technologies

Focused on How to Model in SERPM 7 ABM Environment

Six Scenarios

- Scenario 1 Millennials Behave Differently
- Scenario 2 New Transportation Services Reduce Need for Driving
- Scenario 3 Emerging Technologies Enhance Transit Systems
- Scenario 4 Managed Lanes Used Differently
- Scenario 5 AV Technology Affects How People Travel
- Scenario 6 Combined

Model Components

Model Group	Components		
Complementary Models	Truck, visitor, special generators		
Network Inputs	Speed, capacities, transit attributes		
Population Synthesis	Synthetic person and household attributes and distributions		
Long-Term Models	Usual activity locations (school and workplace)		
Mobility	Vehicle availability		
Daily	Activity plan		
Tour Level	Tour timing, trip chaining, tour destination and mode choice		
Trip Level	Trip mode choice		
Assignment	Highway and transit		

Implementation approach

- Where available: pivot off of existing model parameters or extend existing structures
- Where not available: introduce new terms and calibrate the model to reproduce scenario shares
- Make changes incrementally examine results of demand and supply models
- Single-pass model run
 - Capacity increase scenarios seeded with skims from a full model run
- Full model run (speed feedback)
 - Seeded skims used to reduce run time

Millennials Behave Differently: Implementation

Mode Share by Generation

Source: Dutzik et al., 2014 citing data from ULI, 20135

Mode Share Trend

Source: Dutzik et al., 2014 citing data from National Household Travel Survey 2010 and 2009 data.

"Other means" includes walking, taxicab, motorcycle, bicycle, or other unspecified means.

Potential Futures

Millennials travel differently than other generations, and affect future transportation needs

Three Potential Scenarios of Future Trends

- Back to the future
- Enduring shift
- Ongoing decline

Source: Dutzik, T., and P. Baxandall. (2013). A New Direction: Our Changing Relationship with Driving and the Implications for America's Future, U.S. PIRG, Boston. Retrieved October 1, 2015.

Millennials Scenario Details

- The *Back to the Future* scenario is essentially the model baseline
- The *Enduring Shift* scenario implies that the Millennials hold on to their nonauto preferences throughout their adult lives
- The Ongoing Decline scenario implies that the preference Millennials hold for nonauto modes will increase in future generations

Millennials in the Model

Model Group	Parameter Changes
Complementary Models	
Network Inputs	
Population Synthesis	 Shift Millennial and later generations from suburban to urban areas
Long-Term Models	
Mobility	 Create a term for a head of household in the Millennial generation or
	younger – calibrate to reduce auto ownership
Daily	
Tour Level	Tour mode choice
	 Enduring shift – carry forward age-mode terms
	 Ongoing decline – progressively increase age-mode terms by 50% and
	100% for two generations following Millennials
Trip Level	
Assignment	

Population Relocation

Legend

- Identify eligible households
 - ✓ All households members are 55 or younger
 - ✓ Currently live in an non-urban area
 - ✓ Randomly select 20% to be relocated
 - ✓ 201,734 households are relocated.
- Assumptions to define "urban" areas
 - ✓ Located within 6 Miles from Miami Downtown, 4 Miles from Fort Lauderdale and Hollywood, and 4 Miles from West Palm Beach Downtown
 - ✓ 1082 out of 4406 TAZs are marked as urban.
 - ✓ One urban TAZ is randomly assigned to an non-urban TAZ within the same county

 Introduce sensitivity to the model to reflect positive tendency for households with persons age 55 or younger to prefer non-auto modes and, hence, own fewer autos.

	Obse	erved	Scenario Targets			
Age Group	Rate	% Difference from 18-24	Enduring Shift	Ongoing Decline		
18-24	0.79	-				
25-40	0.82	4%				
41-55	0.95	20%				
18-55	0.87	10%	0.83	0.79		

Autos Per Adult

Source: PUMS 2008-2012 Florida Data

Tour Mode Choice

Current Model

IVTT Equivalent Units

Millennials Behave Differently: Results

Millennials: Mode Share

Change in Mode Share (percentage point)

-6.0%									
-0.076	drive_alone	carpool_2	carpool_3	kissride	parkride	walktotrans it	schoolbus	bike	Walk
Enduring_Shift	-2.9%	-0.3%	0.1%	0.121%	0.092%	1.963%	0.1%	0.0%	0.8%
Ongoing_Decline	-4.7%	-0.6%	0.0%	0.198%	0.141%	3.430%	0.1%	0.0%	1.3%

Millennials: Tour Generation

Change in Number of Tours (%)

-3.50%	MANDATORY	INDIVIDUAL_NON_MA NDATORY	JOINT_NON_MANDATO RY	AT_WORK
Enduring_Shift	-0.54%	-1.79%	-0.22%	-1.20%
Ongoing_Decline	-0.91%	-2.91%	-0.38%	-1.46%

Millennials: Trip Chaining

Change in Average Stops per Tour

-0.0350					
-0.0350	MANDATORY	INDIVIDUAL_NON_M ANDATORY	JOINT_NON_MANDA TORY	AT_WORK	Total
Enduring_Shift	-0.0172	-0.0046	-0.0108	0.0017	-0.0094
Ongoing_Decline	-0.0290	-0.0072	-0.0191	0.0035	-0.0158

Millennials: By Person Type

Changes in Tours by Person Type

Millennials: VMT Changes

Change in Peak Period VMT (%)

-14.00%

-14.00%	Freeway	Uninterru pted Roadway	Higher Speed Interrupte d Facility	Lower Speed and Collector Facility	Ramps	HOV Lanes	Toll Roads	Total	
Enduring_Shift	-2.56%	-0.69%	-3.98%	-7.69%	-2.83%	-2.06%	-3.26%	-3.89%	
Ongoing_Decline	-4.19%	-2.00%	-6.88%	-12.47%	-5.30%	-2.69%	-6.11%	-6.69%	

VMT Changes: Model vs. Scenario

Comparison of Hypothesized and Model Results

Millennials: Summary

- Decrease in travel activity not necessarily reasonable
 - Choice, rather than constraint, to not owning a vehicle implies economic mobility
 - Incorporating a ridesourcing mode in the model may help
 - Leverage other millennial correlations (travel behavior)
- VMT from model does not match scenario
 - Low response to change in population distribution
 - Average tour length did not decrease

Autonomous Vehicles: Implementation

Scenario 5 – AV Technology

Driving Alone Available to Unlicensed Individuals

- Model assumes all individuals 16 or older can drive alone
- Relax assumption to 11 or older

AVs Use Facilities More Efficiently

- Freeway facility types increase capacity by 80-100%
- Other facility types increase capacity by 10-30%

Less Onerous In-Vehicle Travel Time

- Tour mode choice (all purposes and logsums)
- Reduce auto IVT coefficient by 5-10%

AVs Significantly Reduce the Need for Paid Parking

- Reduce parking costs by 20%
- Set maximum terminal time to 1 minute

AV Technology Modeling Wish List

Zero-Occupancy Vehicles

- Self-parking at remote site
- Vehicle repositioning as part of a ridesourcing-type service
- Vehicle repositioning to serve multiple family members

Mix of AV Technologies

- Extend Auto Availability to support type of vehicle
- Interaction of vehicles with varying technology

AV Implementation

Model Group	Parameter Changes
Complementary Models	
Network Inputs	 Freeway facility types: increase capacity by 80-100%
	• Other facility types: increase capacity by 10-30%
Population Synthesis	
Long-Term Models	
Mobility	
Daily	
Tour Level	Tour Mode Choice (all purposes and logsums):
	Reduce Auto IVT coefficient by 5-10%
	Reduce parking costs by 20%;
Trip Level	Trip Mode Choice (all purposes and logsums):
	Reduce Auto IVT coefficient by 5-10%
	• Reduce parking costs by 20%;
Assignment	

Autonomous Vehicles: Results

Percentage Change in Tours by Person

Percentage Change in Trips by Person

Mode Share

Change in Mode Share (percentage point)

0 60%									
-0.0076	drive_alone	carpool_2	carpool_3	kissride	parkride	walktotrans it	schoolbus	bike	Walk
Palm Beach	0.76%	-0.26%	-0.21%	-0.01%	-0.01%	-0.05%	-0.11%	-0.01%	-0.10%
Broward	0.74%	-0.25%	-0.18%	-0.01%	-0.01%	-0.01%	-0.12%	-0.03%	-0.14%
Miami-Dade	0.87%	-0.09%	-0.06%	-0.02%	-0.02%	-0.12%	-0.10%	-0.09%	-0.36%

Transit Linked Trips

Transit Boardings

Transit Boardings

VMT Changes

Change in VMT

Change in Daily Volume

- Increases in trip making not always reasonable
 - Escorting activities
- Highway
 - HOV lanes and Toll roads increased driven by shift to I-95 from Florida turnpike
 - Change in VMT on par with Millennials scenario change
- Transit
 - Potential for micro-transit?
 - Challenges to lower-frequency service
- Incorporating ZOVs would increase congestion

NEXT STEPS

Next Steps

• Model specification for scenarios

	Scenario	Level of Effort
1	Millennials Behave Differently	High: Population shift and new mobility terms are non-trivial
2	New Transportation Services	High: New mode, new terms in auto ownership
3	Emerging Technologies in Transit	High: New mode with transit egress
4	Managed Lanes	Low: network coding changes
5	AV Technology	Medium: mostly parameter changes, although should be done across range

Acknowledgements

- FDOT District 4
 - Lois Bush
 - Shi-Chiang Li
 - Larry Hymowitz
 - Hui Zhao

- Cambridge Systematics
 - Jay Evans
 - Jingjing Zang
 - Kazi Ullah
 - Tom Rossi
 - Peter Haliburton
 - Peng Zhu

- FIU
 - Xia Jin
 - Mohammad Lavasani

Thank you!

For full details on scenario definitions:

