Activity-Based Model Future Mobility Experiments Experiments with AV-Exclusive Facilities

presented by Marty Milkovits, Cambridge Systematics, Inc.

October 17, 2017

Outline

- Previous Work
- Scenario: AVs on HOTs
- Implementation
- Results
- Discussion

Background and Objectives

Background

- **Models** are applied to gauge the demands for and the sizes of new facilities
- Emerging technologies will disrupt travel behaviors
- Three phases
 - Review of relevant literature
 - Identify key parameters and data needs
 - Compile regional, national trends, and discuss potential scenario testing

Objectives

- Compile information on emerging technologies from identified sources and case studies
- Gather **regional and national trends** in a manner to support discussion of potential scenario testing
- Provide definition to specific scenarios that could be tested with the SERPM 7 model to support policy analysis
- The findings can be applied to test and shape policies in regional and MPO LRTPs to achieve their goals and objectives. It can also help to project more accurate demands for projects
- Evaluate the SERPM 7 model's capability to test future scenarios and inform development of SERPM 8

Scenario Development

Identified Potential Scenarios for Modeling the Travel Behavior Impact of:

- Changing demographics
- Emerging technologies

Focused on How to Model in SERPM 7 ABM Environment

Six Scenarios

- Scenario 1 Millennials Behave Differently
- Scenario 2 New Transportation Services Reduce Need for Driving
- Scenario 3 Emerging Technologies Enhance Transit Systems
- Scenario 4 Managed Lanes Used Differently
- Scenario 5 AV Technology Affects How People Travel
- Scenario 6 Combined

Outline

- Previous Work
- Scenario: AVs on HOTs
- Implementation
- Results
- Discussion

AVs on HOTs Scenario Motivation

- Mixed fleet limits potential for capacity / speed improvements
 - Maybe even detrimental effects in the near term?
- If an exclusive facility could be dedicated to AVs, would that be a net benefit to the system?
- At what point?
 - Market penetration
 - Travel behavior shifts
 - Capacity increases

Autonomous Vehicles

Relevant Benefits

- Use facilities more efficiently
- Less onerous in-vehicle travel time
- Reduce the need for paid parking
- Greater mobility for non-drivers

Market Penetration Forecasts

Source: Lavasani, Jin and Du (2016), TRR No. 2597, pp. 67-74.

- Based on the Generalized Bass diffusion model
- Investigated previous penetration patterns for automobiles (from 1920 to 2014) and hybrid electrical vehicle
- Considered technology acceptance tastes through the usage of internet and cell phones from 2001 to 2014.

Outline

- Previous Work
- Scenario: AVs on HOTs
- Implementation
- Results
- Discussion

SERPM Overview

- Current model: SERPM 7.0
 - 2010 base / 2040 forecast
 - Activity-based model for residents
 - Tour-based model for visitors
 - Half-hour time periods (5AM 12AM)
 - 5 Highway assignment Time periods
 - Auto occupancy; Pay / No Pay / HOV
 - 4 Transit assignment time periods
 - Access mode
- Represents 3 counties
 - 2.1M households and 5.5M persons
- SERPM 8.0 Model Update
 - New HH survey and Streetlight data
 - 2015 Base / 2045 Forecast

Implementation approach

- Where available: pivot off of existing model parameters or extend existing structures
- Where not available: introduce new terms and calibrate the model to reproduce scenario shares
- Make changes incrementally examine results of demand and supply models
- Single-pass model run
 - Capacity increase scenarios seeded with skims from a full model run
- Full model run (speed feedback)
 - Seeded skims used to reduce run time

Auto Technology Component

- Household attributes
 - Household income <75k
 - Number of Vehicles in HH
- Spatial attributes
 - Intersection density
 - Population density
 - Retail density

- Person attributes
 - Long commute (>35 miles)
 - Education (Bachelors or higher)
 - Proportion of drivers under 30
 - Proportion of drivers age (Greater than 49)
 - Male driver in HH

Market Penetration Scenarios

• Assumes earlier adoption by higher income households (>75K annually) and households with 3 or more vehicles.

Market Penetration	HH Income		HH Vehicle	
	<75K	>=75K	<3	>=3
10%	0%	100%	10%	90%
30%	20%	80%	20%	80%
50%	40%	60%	30%	70%
75%	45%	55%	40%	60%
90%	50%	50%	50%	50%

Total #HH	HH Income		HH Vehicle	
2,801,906	<75K	>=75K	<3	>=3
	1,855,857	946,049	2,412,337	389,569

Implementation Assumptions

All HOT facilities become exclusive AV facilities

Maintain current toll rate

- All auto travel by persons in an AV household are by AVs
 - And the opposite is true for non-AV households
- ZOV operation is limited

Outline

- Previous Work
- Scenario: AVs on HOTs
- Implementation
- Results
- Discussion

Scenarios Explored (to date)

AV Market Penetration	Underage Drivers	IVTT Sensitivity	Parking Costs	Managed Lane Capacity
10%	>=11 yrs can drive	10% reduction	20% reduction	90% increase
30%				
50%		50% reduction		
90%				

- Mobility: auto ownership, technology, transponder
- **Daily activity pattern**: tours by type, trip chaining, tour rates, intra-household coordinated travel, trips by type
- Tour location and time of day distributions
- Mode choice by income and region
- Transit ridership by submode, area type, region
- **Highway**: trip length; by facility type VMT, VHT, average speed, delay

Highway Network: Exclusive HOTs

Change in Network Delay

Impact of AVs on Travel Behavior

AV Household Mode Shift

HOT Capacity Increase

Change in Network Delay

IVTT 10% Reduction

Change in Network Delay

■ HOTs exclusive to AVs ■ AV Behavior Impact - 10% IVTT Reduction

IVTT 10% and 50% Reduction

Change in Network Delay

HOTs exclusive to AVs AV Behavior Impact - 10% IVTT Reduction AV Behavior Impact - 50% IVTT Reduction

Cumulative and Exclusion

Change in Network Delay

AV Behavior Impact - 50% IVTT + No HOT Exclusion AV Behavior Impact - 50% IVTT Reduction

AV Behavior - 50% IVTT + 90% Capacity Increase

Cumulative and Exclusion - VMT

Change in VMT

AV Behavior Impact - 50% IVTT + No HOT Exclusion AV Behavior Impact - 50% IVTT Reduction

AV Behavior - 50% IVTT + 90% Capacity Increase

Outline

- Previous Work
- Scenario: AVs on HOTs
- Implementation
- Results
- Discussion

Model Challenges/Lessons Learned

- Accessibility feedback
- Run time
 - Single iteration for exploratory analysis
 - Experiment design
- Complexity
 - Checklists!*

*The Checklist Manifesto, Atul Gawande

Future Experiments

- Scenario 1 Millennials Behave Differently
- Scenario 2 New Transportation Services Reduce Need for Driving
- Scenario 3 Emerging Technologies Enhance Transit Systems
- Scenario 4 Managed Lanes Used Differently
- Scenario 5 AV Technology Affects How People Travel
- Scenario 6 Combined

Acknowledgements

- FDOT District 4
 - Lois Bush
 - Shi-Chiang Li
 - Larry Hymowitz
 - Hui Zhao
- FIU
 - Xia Jin
 - Seyedmirsajad (Sajad)
 Mokhtarimousavi
 - Mohammad Lavasani (Caltran Group)

- Cambridge Systematics
 - Jay Evans
 - Jingjing Zang
 - Kazi Ullah
 - Tom Rossi
 - Peter Haliburton
 - Peng Zhu

Marty Milkovits

mmilkovits@camsys.com

781-539-6801

Other Scenarios

Comparison of Hypothesized and Model Results

Enduring Shift Ongoing Decline

AV Scenario: Change in Daily Volume

Highway capacity improvements shifted traffic to major facilities