Artificial Intelligence for Future of Travel Demand Modeling

Presenter: Shenhao Wang
Assistant Professor

Director, Urban Al Lab | Master of Science in Urban Analytics @ UFL
11/08/2023

Self Introduction

Shenhao Wang
Assistant Professor (started 2022),
Director for Urban Al Lab | Master of Urban Analytics
Department of Urban and Regional Planning,
University of Florida

What is artificial intelligence?

Centered at the **Deep Learning** (Deep Neural Network Models)

Extremely broad applications

How to use AI to improve transportation?

Project: Transit-Centric Smart Mobility System (TSMS) for High-Growth Urban Activity Centers: Improving Energy Efficiency through Machine Learning

Pls: Jinhua Zhao (MIT), Haris Koutsopoulos (NEU), Shenhao Wang (UFL), Venu Garikapati (NERL)

Time period: 2020-2024

Industrial partner: Chicago Transit Authority

Pilot experiment: Chicago

Grant: \$2.2M

Sponsor: USDOE

Scope of the TSMS project

Goal: Using AI to improve the public transit.

Three technical pillars for three transit functions

- Deep learning (DL) for transit demand prediction
- Reinforcement learning (RL) for transit operation control
- Robust optimization (RO) for transit operation planning

Collaboration network

Technical achievement 1. Designing probabilistic graph neural networks (GCNs) to predict spatiotemporal transit demand

Technology innovation

- 1. Propose probabilistic GCNs, as opposed to deterministic GCNs
- 2. Apply the framework to quantify demand uncertainty
- Predict spatiotemporal demand uncertainty with >25% higher performance than benchmarks

Combining probabilistic and deterministic assumptions

Technical achievement 2: Using urban imagery to enhance travel demand prediction with >5% improvement

Technology innovation

- Create a deep hybrid model (DHM) for transit demand prediction with urban imagery
- It improves accuracy by >5% in demand prediction

Deep hybrid models combining data (numbers + imagery), and models (classical demand models + computer vision)

Technical achievement 3: Designing a reinforcement learning (RL) framework for real-time bus controls

Bus as a reinforcement learner

Technology innovation - RL formulation

- 1. Agent: bus
- 2. State: local and neighboring buses
- 3. Action: holding and stop-skipping
- 4. Reward: waiting and riding time

Empirically, the RL approach reduces the waiting time by 4~8%.

Human & Machine Interactions

An Important Question for the TSMS project

How are the technical achievements translated into practice?

Using the technologies to conduct a bus control pilot experiment in Route-81, Chicago (2022 Fall)

Collaborative work with Chicago Transit Authority (CTA)

Motivation of the pilot

Transit workforce shortage in 2022: 84% of US agencies impacted

In CTA: Only 84% services were delivered.

The status-quo control system is:

- Non-digitized
- Non-integrated
- Not effective

We demonstrate how AI can address the transit operation challenges in a pilot.

Achievements in the pilot

- 1. Built a real-time control dashboard to streamline the information.
- 2. Implemented an AI-empowered recommendation engine to control bus dispatching.

Terminal: Jefferson Park

Students on the site

Achievements in the pilot

Excess wait time by # of bus trips
37% reduction

100
80
80
80
40
20
13
14
15
16
17

Overcrowding by stop 5-20% reduction

90th Cycle times 2.4% reduction

Thank You

Shenhao Wang Urban Al Lab @UFL

Webpage: urbanailab.com

Email: shenhaowang@ufl.edu

