Data-Driven Modeling Engine for Short-Term Forecasting

MetLife Stadium (MLS) Transit Ridership Forecasting Approach

presented to Model Task Force, Fall 2023

presented by Cambridge Systematics, Inc. Nikhil Puri

TEAM: Moby Khan, Jason Lemp, Daniel Patterson, and Xuenan Ni

CAMBRIDGE SYSTEMATICS

Think *Forward*

November 8, 2023

Data-Driven Models in Response to Demand Model Pain Points

CHALLENGES

Long model development & run times

Constrained by model limitations

Difficulty explaining results

Poor reporting and visuals

APPROACH

Data-driven models*

Scalable and short run times

Improved visuals and reporting

Rooted in modeling best practices for short-term forecasts

Ability to blend data sources and model input

* Data-driven models are data agnostic

Big Data-Driven Model Examples

- » ORANGE COUNTY, NY Model development from scratch in the absence of a household travel survey
- » SAN DIEGO Multimodal sketch planning tool walking, biking, transit mode shares
- » METLIFE STADIUM DATA-DRIVEN MODEL
- » **ONEIDA COUNTY, NY –** <u>Highway corridor</u> sketch planning model (underway)
- » SAN FRANCISCO BAY Mode share and transit competitiveness sketch planning tool

Secaucus Junction – Meadowlands Complex

Secaucus Junction

10 rail lines | Gameday rail to MLS

Meadowlands Complex

MetLife Stadium American Dream Mall Racetrack

Key Events Football and soccer games Concerts Weekends

Modeling Approach Rationale

CREATIVE SOLUTION TO A NONTRADITIONAL CHALLENGE

CHALLENGE

Predominantly weekend travel

Flexibility to expand service market

Ability to consider markets beyond model region

Limited data availability

Short deadline

APPROACH

Leveraged LOCUS – allows scalability add tailored solutions

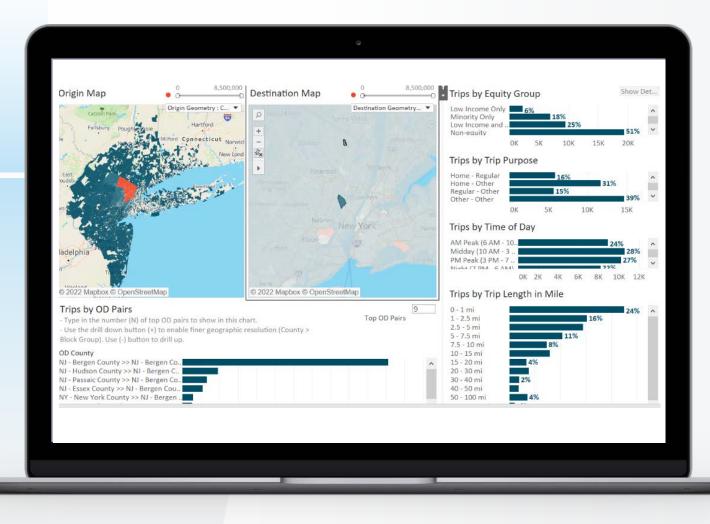
Developed a sketch planning tool using best practices

Leveraged regional models

Short-term forecasts

* LOCUS – Big data platform developed by Cambridge Systematics

Establishing a Baseline – LOCUS


LOCUS

BIG DATA PLATFORM developed by Cambridge Systematics

Anonymized cell phone data – 2019

✓ Travel patterns

- » origin-destination
- » time of day
- » equity tagging
- » trip purpose
- ✓ Dashboarding
- Ability to analyze raw data to answer unanticipated questions

Trip Generation

Trip Generation is an input into the model

For example, the user specifies the following:

- Number of MLS attendees for a particular event
- Number of visitors to the mall

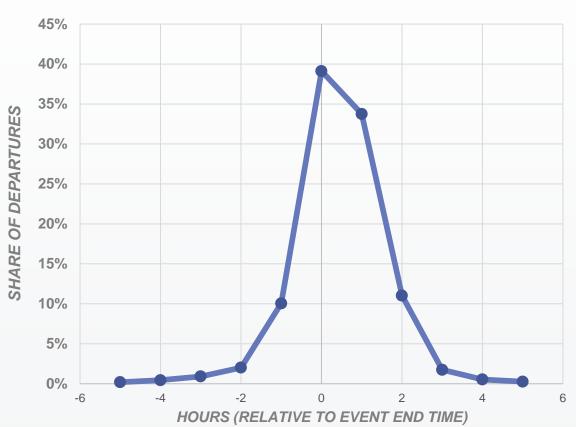
Event type is an input

- For stadium sports event, concert, and other
- For mall weekday, Saturday or Sunday

Trip Distribution

Relied on LOCUS data for trip distribution

Census block group level


Tailored approach to account for lower than anticipated sample size

 Used trip (origindestination) and home location information Ability to leverage raw data

- Analyzed data to understand visits to the stadium and the rail line
- Identify calendar date of event
- Distributions by geography, time of day, etc.

Alternative Scenario Results (Typical NFL Game) – Hourly Distribution

HOURLY DISTRIBUTION OF DEPARTURES AFTER A NFL GAME

73% DEPARTURES within 2 HOURS of event ending

Hour before
game endHour 0-1
after gameHour 1-2
after game10%39%34%

TRANSIT DEPARTURE BY HOUR

Hourly Departure Splits	Hour	Outbound
39%	Hour 0-1	4,075
34%	Hour 1-2	3,543

Baseline Results

Mode	Daily Inbound		Daily Outbound		Total
Bus	2,099	3%	2,359	3%	4,457
Rail	7,357	10%	8,299	11%	15,656
Auto	65,574	87%	64,372	86%	129,946
TOTAL	75,030	100%	75,030	100%	150,060

Assumed ~ 75K attendees

Sensitivity Testing

Types of sensitivity tests conducted

- Doubled the fare decreased ridership by approximately 30 percent
- Increased travel times resulted in a 12 percent reduction in ridership
- Reduce rail headways increased ridership by approximately 11 percent

Validation and sensitivity test results vetted by agency staff and thought to be reasonable

Alternatives/Scenario Planning

TYPICAL NFL GAME WITH INCREASED TRANSIT SERVICE

Meadowlands Rail + New Transit Mode

Secaucus Junction – Meadowlands

- Rail –15 min IVT & 15 min headway (4/hour)
- New Transit Mode ~ 13 min IVT & ~ 90 second headways (38 per hour)

Modeled

- Combined "rail" mode
- ~ 90 sec headways
- ~ 12.8 min travel time (weighted average)

Alternative Scenario Results (+ New Transit Mode) – Typical NFL Game

Mode	Daily Inbound		Daily Outbound		Total
📮 Bus	1,958	3%	2,151	3%	4,109
👰 Rail	3,965	5%	4,390	6%	8,355
New Transit Mode	5,446	7%	6,031	8%	11,477
🚘 Auto	63,660	85%	62,458	83%	126,118
Total	75,030	100%	75,030	100%	150,060

- New Transit Mode modeled as rail similar attributes
- Approx. 16 % transit share, including buses
- 27% increase in daily Rail + New Transit Mode ridership between Secaucus & MLS, compared to baseline
- ~ 46 % shift from Rail to New Transit Mode attributable to high frequency New Transit Mode service

Large Sporting Event

(Rail + New Transit + Additional Visitors from NYC, Hudson, Essex+ Reduced Parking)

Mode	Daily Ir	nbound	Daily Ou	utbound	Total
🖳 Bus	2,500	3%	2,800	3%	5,300
👰 Rail	12,500	15%	13,000	16%	25,500
New Transit Mode	17,400	21%	18,100	22%	35,500
🚘 Auto	50,100	61%	48,600	59%	98,700
Total	82,500	100%	82,500	100%	165,000

Assumption – 1.5 X baseline share of visitors from New York, Essex, Hudson, Queens, and Kings counties

- Reduced outside counties by delta
- Reduced parking by 65% (28K to 9.8K)
- Approximately 40% transit share, including buses

In Summary

Alternate approach to travel demand models that offers:

- Geographic flexibility and scalability
- Quick run times
- Scenario testing
- Data fusion

 A variety of applications – transit mode choice, highway corridor studies, multimodal planning, and a framework to develop a simpler travel demand model

Ability to run models in the cloud

Caveats

- Not a replacement for long-term forecasting models
- Ideal for short-term forecasting and sketch-planning

Contact Information

Thank You for Listening ! Nikhil Puri

Cambridge Systematics

email: npuri@camsys.com

Tel: 201–926–0425

