FSUTMS Air Quality Postprocessor

presented to

Full MTF

presented by

Diana Fields, FDOT Systems Planning Keli Paul, AICP, Cambridge Systematics

November 10, 2009

Overview

- What is the FSUTMS Air Quality Postprocessor (AQPP)?
- Benefits of the FSUTMS AQPP
- Emissions Calculation Process
- Impacted FSUTMS Models
- Schedule
- FSUTMS AQPP Training Opportunities
- Next Steps
- Demonstration

What is the FSUTMS AQPP?

 A module within FSUTMS/Cube Voyager that calculates emissions for portions of the nonattainment area (NAA) inside the FSUTMS travel demand model

Calculates:

- Emissions related to Ozone formation
 - Oxides of Nitrogen (NOx)
 - Volatile Organic Compounds (VOCs)
- Emissions related to Greenhouse Gas (GHG) formation
 - Carbon Dioxide Equivalents (CO2eq)
 - Methane (CH4)
 - Nitrous Oxide (N2O)

Users:

- Ozone NAAs for conformity
- Areas interested in measuring GHG emissions

Benefits of the FSUTMS AQPP

- Streamlines Calculation of Emissions
 - Minimizes number of times needed to run MOVES
 - Shorter run times
 - Outputs summary tables in .csv and .dbf format
- Standardized approach
 - Reduces human error
 - Facilitates transferability
 - Streamlines interagency consultation process
- Outputs loaded network with emissions by pollutant on each link (total and per mile) to visualize emissions geographically

Benefits of the FSUTMS AQPP (Cont'd)

Output Summary Table

SUMMARY OF AIR QUALITY FOR ALL THREE COUNTIES							
		Daily			Daily	Daily	Daily
DESCRIPTION	HPMS	Model	Daily HPMS	Daily Model	Model	Model	Model
	C: 400				NOX	VOC	CO2eq
NAME	CLASS	UNADJ.	ADJ.	ADJUSTED	(gms)	(gms)	(gms)
		VMT	FACTOR	VMT			
Rural Interstate	1	431660.4	0.8193	353670.3	2230370	141597.5	283240161
Rural Principal Arterial	2	1133389.7	0.6621	750358.8	4771367.8	327602.3	608713095
Rural Minor Arterial	6	945413.5	0.6846	647243.2	4342938.9	321148.3	542662199
Rural Major Collector	7	147404.7	0.8503	125340	823630	59505.7	104139257
Rural Minor Collector	8	104244.3	2.2597	235561.2	1659893.4	124230.8	207314002
Rural Local	9	719137.9	0.7917	569362.8	4877153.2	427691.1	583756735
Urban Interstate	11	1639814.6	0.8512	1395811.5	9562610.4	644999.8	1194210466
Urban Freeway	12	0	0	0	0	0	0
Urban Other Arterial	14	5037196.4	0.949	4780487.9	36994655.5	3029946.7	4500363461
Urban Minor Arterial	16	3702246.4	0.9835	3641087.6	27429076.6	2160269.2	3343342866
Urban Collector	17	2476235.6	0.9528	2359331.4	17955054.2	1391454.8	2181185141
Urban Local	19	2073585.9	2.7422	5686197.8	51673131.2	4876668	6209710671

Benefits of the FSUTMS AQPP (Cont'd)

Output Loaded Network

Emissions Calculation Process

Impacted FSUTMS Models

- Currently exceeds 0.075 ppm standard based on 2007-2009 ozone monitoring data
 - Northwest Florida Regional Planning Model
 - Tampa Bay Regional Planning Model
- What happens if a potentially stricter standard is implemented?

Schedule

- December 2009 MOVES2009 Final Release
- Early 2010 NAAs run MOVES emissions factors using final release and localized paremeters & FDOT finalize AQPP process
- Spring/Summer 2010 AQPPs complete for currently anticipated NAAs based on 0.075 ppm standard (base year)
- Fall 2010 AQPPs complete for anticipated NAAs based on a potentially stricter standard (base year)
- August 2011 EPA designates Ozone NAAs
- August 2012 Ozone NAA Conformity Determination Reports (CDRs) Must be Approved by U.S. DOT

FSUTMS AQPP Training Opportunities

FSUTMS Modeling Training Series

Next Steps

- Coordinate FSUTMS AQPP process with:
 - EPA Region 4
 - FHWA FL Division and Resource Center
 - DEP SIP emissions budget calculation process
 - FDOT Districts
 - Potential ozone nonattainment areas (MPOs/Counties)
- Formalize interagency consultation process
 - Ozone baseline year (2007?)
 - MOVES input parameters by County
 - Use of HPMS adjustment factors
- Upon final MOVES2009 release:
 - Localize MOVES input parameters in coordination with DEP
 - Run MOVES emissions factors for base year

Contact Information

Diana Fields
FDOT Systems Planning
605 Suwannee Street, MS 19
Tallahassee, FL 32399
Phone (850) 414-4901
Fax (850) 414-4876
Email: Diana.Fields@dot.state.fl.us

