

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Civil & Coastal Engineering

Machine Learning Aided Transportation System Analysis, Management, and Decision Making

Lili Du, Ph.D., Associate Professor

University of Florida

SE Florida FSUTMS meeting on September 16th 2022

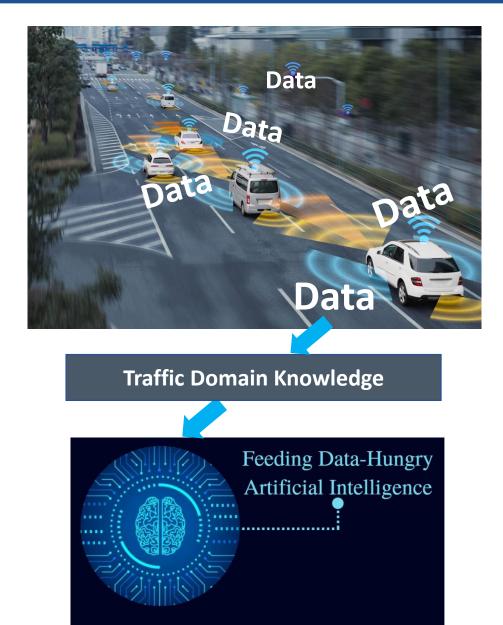
ML Aided Transportation System Management Decision Making

Data in Transportation System

- Huge and diverse spatiotemporal traffic data
 - Fixed point traffic data from loop, camera.
 - Trajectory data from probe vehicles.
 - Traffic data communication through V2V or V2I.
 - Mobility from mobile apps

ML Research (Data + ML + Domain Knowledge)

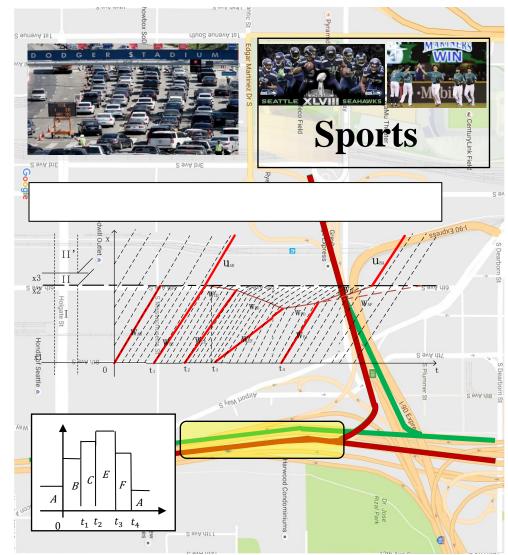
- Traffic anomaly detection and prediction: sports; construction; accidents.
- Hybrid Mobility Service design.
- Connected and autonomous vehicle control.
- Traffic congestion mitigation: routing; ridesharing; information provision strategy.



Early Alerting a Coming Public Event and Its Traffic Impact

Public Event and Its Unique Impacts

- Sports, concerts, special festivals.
- Traffic congestion mainly occurs before the event starts or after it comes to the end.
- Traffic impacts evolve in a large area and last over a relatively long time; proactive congestion is desired.
- Highway segment near to the ramp leading to the local venue of the event is a critical point to sense and detect the event.
- Shockwave diagrams carry more features of the impacts than point data only showing traffic demand fluctuation.

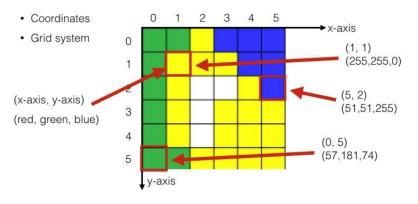


Develop shockwave generation/detection algorithm according to traffic flow theory

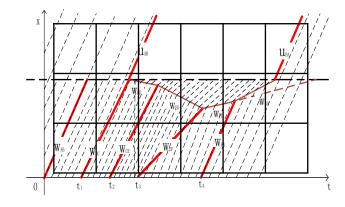
Early Alerting a Coming Public Event and Its Impact

Encoding shockwaves

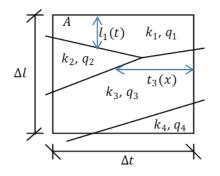
An Image



A Shock wave diagram



Grid Design



- An image can be stored as digital numbers by computers
- Formation: pixel grid system. And, each pixel represents its color
- Color encoding: (Red, Green, Blue)
 ⇒ a pixel

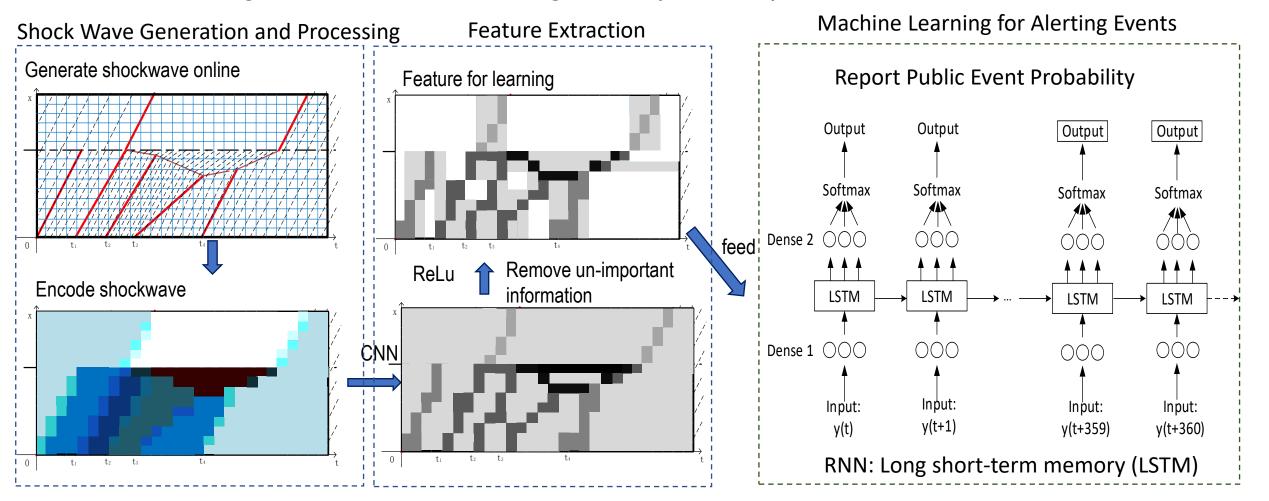
- Shock wave diagrams can also be stored as digital numbers by computers
- Formation: pixel grid system. And, each pixel represents traffic state
- Traffic state encoding: (Flow, Density)
 ⇒ a pixel

 $M = \left\{ \left(\overline{k}, \overline{q}\right) \right\}_{mn}$ $\bar{k}(A) = \frac{t(A)}{|A|} = \frac{\sum_{i}^{N} k_{i} \int_{0}^{\Delta t} l_{i}(t) dt}{\Delta l * \Delta t}$ $\bar{q}(A) = \frac{d(A)}{|A|} = \frac{\sum_{i}^{N} q_{i} \int_{0}^{\Delta l} t_{i}(x) dx}{\Delta l * \Delta t}$

The optimization model searches for the best grid design to keep data resolution and computation efficiency

Early Alerting a Coming Public Event and Its Impact

Shock Wave Diagrams Fed Deep Learning Model (SW-DLM)



Grid is optimally designed to keep data resolution and computation efficiency

• Hanyi Yang, Lili Du

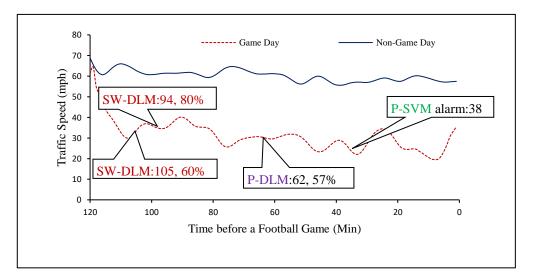
Early Public Event Prediction and Impact Alarming

Experiment

- Sports Game from 1PM-3PM, raining 11am-12pm
 - T-Mobile Park and CenturyLink Field in Seattle, Washington State.
- Report Event and Impacts
 - SW-DLM: Senses traffic impacts 105 (or 94) mins before the game and predicts the coming game with 60% (or 80%) accuracy.
 - P-DLM: alarms the event 62 mins before the game with 57% accuracy.
 - P-SVM: alarms the event 38 minutes before the game.

Traffic impact report on Sep 25, 2011; Event from 1pm-3pm

Time	Free flow	Congestion	Event	Rain	
7:00	Y	Ν	Х	Х	
8: 00	Y	Ν	Х	Х	
9:00	Y	Ν	Х	Х	
10:00	Y	Ν	Х	Х	
11:00	Ν	Y	V	V	
12:00	Ν	γ	V	X	
13:00	Ν	Y	E	Х	
14:00	N	Y	E	Х	
15:00	Y	Ν	Х	Х	
v: impact alarmed by SW-DLM (event prediction with 50% confidence)					



Can be extended to predict/detect other events such as traffic accidents or work zones which induce traffic anomalies

Data-driven Hybrid Mobility Service Design

Ridesharing and Transit

- Complicated competition and complementary relationship between transit and ridesharing.
- None of them can fully satisfy mobility needs.

Hybrid urban mobility services

- Integrate transit with on-demand services, e.g. microtransit and ridesharing.
- Inject flexibility into transit system.

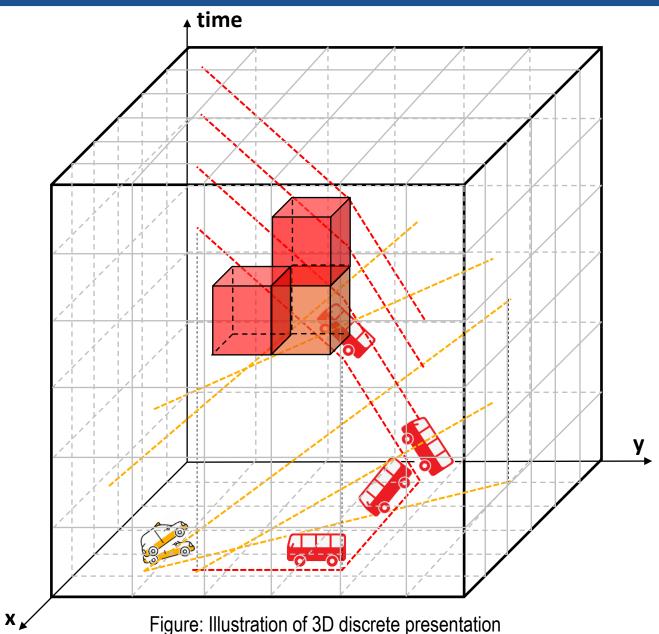
Challenges

- Where are the good connections between transit and on-demand services?
- How service gaps evolve over time?
- Joint ridesharing and transit trajectories: a good indicator

Data-driven Hybrid Mobility Service Design

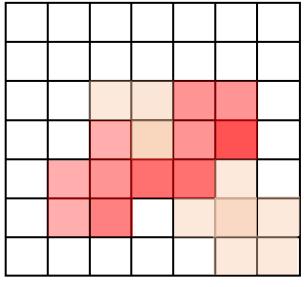
Trajectory Data Presentation

- Analyzes Joint Transit and Ridesharing Trajectories in a 3-D space (x-y-time).
- Presentation Difficulties
 - Scrambly; non-additive curves.
 - Hard to analysis; hard to see patterns by AI directly.
- STEP I: Optimal 3D discretization presentation
 - Optimal discretization of the time axis.
 - Optimal discretization of x-y plane.

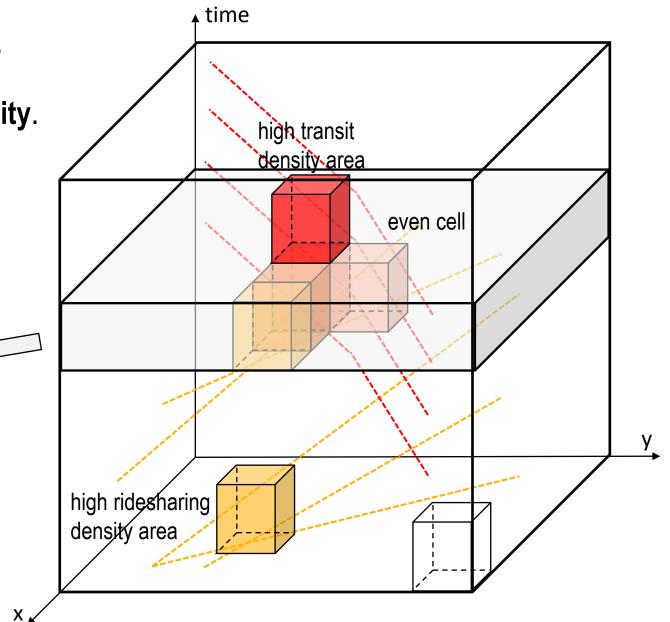


Data-driven Transit Service Design - Trajectory Data Presentation

- STEP II: Heatmap Generation and Analysis
 - Ridesharing (R_r) and transit (R_t) trip density.
 - Transit or ridesharing trajectory dominant, or even cell
 - Generate Heatmap (Many)



Heatmap of each time interval



• Jiahua Qiu, Wang Peng, Lili Du

Data-driven Transit Service Design - Pattern Recognition and Learning

Pattern Recognition by Clustering Algorithm

- "Sandwich" patterns (A-B-A) correlates to First/last Mile Zones
 - B zones is with high transit station density.
 - A zones attract or generate significant traffic demand (land use analysis).
 - Many ridesharing orders in A zones, e.g. $A_1 \rightarrow A_2, A_1 \rightarrow B$, or $A_2 \rightarrow B$.
- Convolution LSTM Spatiotemporal Learning
- Heatmaps as time series training data.
- Find future "Sandwish Pattern" and
- Predict FLM zones hour by hour.

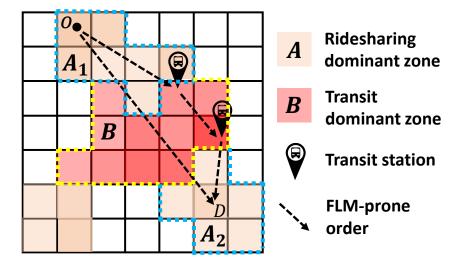


Figure 3. Illustration of "sandwich" patterns.

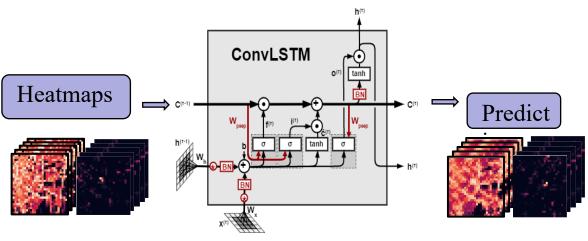


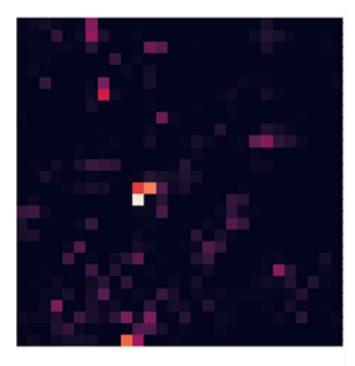
Figure: Illustration of ConvLSTM to predict FLM zones.

• Jiahua Qiu, Wang Peng, Lili Du

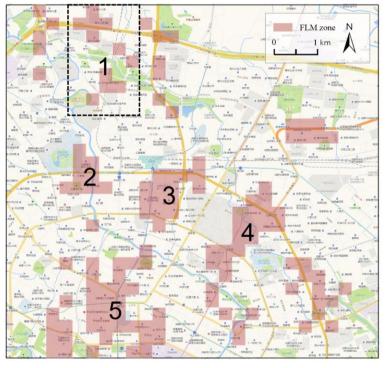
Result of Case Study

Transit First/Last Mile (FLM) Zones Validation in Second Ring of Chengdu city, China

(a) FLM zones on the heatmap:Light color inside pixelrepresents a high probability ofFLM gaps.

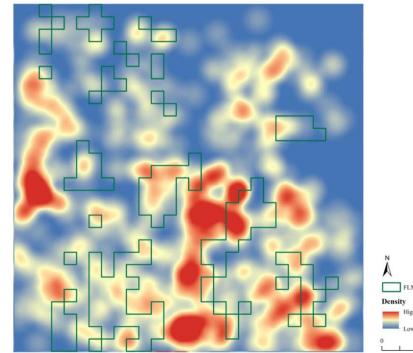


(b)FLM zones on the map: covering big residential areas or commercial areas with significant traffic demand.



(c) Overlap FLM heatmap on the transit stop heatmap

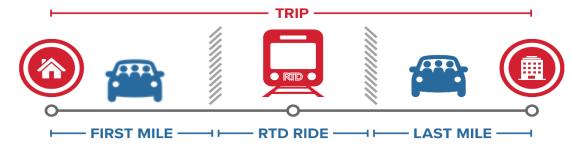
- FLM zones are near the areas that have high transit stop density.
- Transit service is low inside the FLM zones.



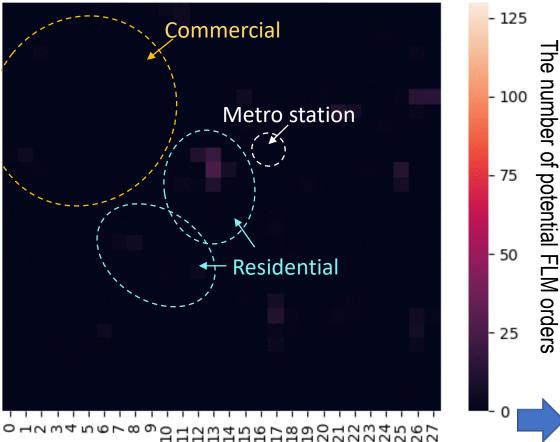
Data-driven Transit Service Design-Predict FLM

Transit First/Last Mile Zones Evolvement over A Day

- FLM zones in commercial areas are not active until 10am since Malls are closed.
- FLM zones in residential areas near metro station are more active than other areas.
- Help adaptively dispatch ridesharing or microtransit services.



Oct.3th 8:00:00-9:00:00



Analyze the trajectory data of other modes, such as private auto, micro-mobility, to develop optimal transit design

• Jiahua Qiu, Wang Peng, Lili Du

UF Transportation Institute UNIVERSITY of FLORIDA

Community Learning Based Semi-Centralized Optimal AV Carpool/Ridesharing Scheme

Lili Du, Ph.D. Associate Professor University of Florida

SE Florida FSUTMS meeting on September 16th 2022

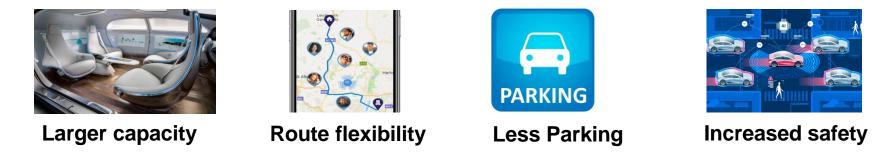
* Ridesharing (such as Uber and Lyft) improves mobility and reduces private car ownership rate

Ride-hailing (solo trip) causes congestion

Low occupancy leads to congestion

Solution: Promote Carpooling

The advantages of autonomous vehicles (AVs)

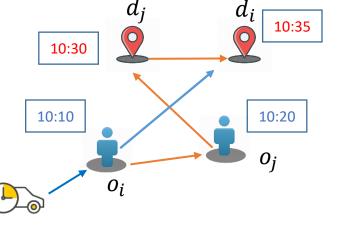


Peng, Wang, and Lili Du. "Investigating Optimal Carpool Scheme by a Semi-Centralized Ride-Matching Approach." IEEE Transactions on Intelligent Transportation Systems (2022). DOI: <u>10.1109/TITS.2021.3135648</u>

FSUTM Seminar Sept 16, 2022

Research: Matching multiple riders with multiple AVs in Real Time

- * Riders have different timing and trip plans, thus hard to match
- Carpooling (i.e., ridesharing) may often cause detour, currently have low compliance
- TNC receives a large-scale realtime mobility service requests
- Performing real-time optimal matching leads to high computation challenges



FSUTM Seminar Sept 16, 2022

Transportation Institute UNIVERSITY of FLORIDA

Research Challenges

CSP-MIP

$\min \sum_{v \in V} \sum_{n_1 \in O \cup D} \sum_{n_2 \in O \cup D} \tau_{n_1 n_2} x_{n_1 n_2}^v +$	(*)
$\sum_{v \in V} \sum_{n_2 \in O} \tau_{n_v n_2} x_{n_v n_2}^v$	(1)
Subject to	
$ \begin{aligned} x_{n_1,n_2}^v &= 0, \forall v \in V, \forall n_1 \in \widetilde{N}, \forall n_2 \in O \cup D, n_1 \\ &\neq n_v \end{aligned} $	(2)
$ \begin{aligned} x_{n_1,n_2}^{\nu} &= 0, \forall \nu \in V, \forall n_1 \in O \cup D \cup \widetilde{N}, \forall n_2 \\ &\in \widetilde{N} \end{aligned} $	(3)
$\sum_{n \in O} x_{n_v,n}^v \le 1$, $\forall v \in V$	(4)
$\sum_{v \in V} \sum_{n \in O \cup D \cup \tilde{N}} x_{n, o_i}^v = 1, \forall i \in I, n \neq o_i$	(5)
$\begin{split} \sum_{n_1 \in O \cup D \cup n_v} x_{n_1, o_i}^v &= \sum_{n_2 \in O \cup D} x_{n_2, d_i}^v, \\ \forall i \in I, \forall v \in V, n_1 \neq o_i, n_2 \neq d_i \end{split}$	(6)
$\sum_{n_1 \in \{0 \land i\} \cup \{D \land d_i\} \cup \emptyset} x_{n_1 \land i}^v = \sum_{n_2 \in \{0 \land i\} \cup D} x_{o_i, n_2}^v, \forall i \in I, \forall v \in V$	(7)
$\sum_{n_1 \in O \cup D} x_{n_1,d_i}^v \ge \sum_{n_2 \in O \cup D} x_{d_i,n_2}^v,$ $\forall i \in I, \forall v \in V, n_1 \neq d_i, n_2 \neq d_i$	(8)
$\vec{t}_n^v \ge 0, n \in O \cup D \cup \tilde{N}$	(9)
$ \tilde{t}_{n_2}^v - \tilde{t}_{n_1}^v - \tau_{n_1 n_2} \ge M [x_{n_1 n_2}^v - 1], $	
$\forall v \in V, \forall n_1 \in O \cup D \cup \widetilde{N}, \forall n_2 \in O \cup D, n_1 \\ \neq n_2$	(10)
$ \vec{t}_{n_1}^{\nu} - \tilde{t}_{n_1}^{\nu} \ge \varepsilon \sum_{\substack{n_2 \in O \cup D \setminus n_1 \\ n_2 \in O \cup D \setminus n_1}} x_{n_1, n_2}^{\nu}, $ $ \forall \nu \in V, \forall n_1 \in O \cup D \cup \tilde{N} $	(11)
$\tilde{t}_{o_i}^v \leq \tilde{t}_{d_i}^v, \forall i \in I, \forall v \in V$	(12)
$\tilde{t}_n^v \le t^{-}(n) - t^+(n), \forall n \in O \cup D$	(13)
$\tilde{t}_{o_i}^v - \tilde{t}_{o_j}^v \le M\psi_{o_i,o_j}^v, \ \forall i \in I, \forall j \in I, i \neq j$	(14)
$ \begin{split} \tilde{t}_{o_i}^v - \tilde{t}_{o_j}^v \geq M\left(\psi_{o_i,o_j}^v - 1\right), \forall i \in I, \forall j \in I, i \\ \neq j \end{split} $	(15)
$\tilde{t}_{o_i}^v - \tilde{t}_{d_j}^v \leq M\psi_{o_i,d_j}^v, \forall i \in I, \forall j \in I, i \neq j$	(16)
$\begin{split} & \tilde{t}_{o_i}^v - \tilde{t}_{d_j}^v \geq M\left(\psi_{o_i,d_j}^v - 1\right), \forall i \in I, \forall j \in I, \\ & i \neq j \end{split}$	(17)
$\omega_{n_1,n_2,o_i}^v \le x_{n_1,n_2}^v, \forall i \in I, \forall v \in V$ $\forall n_1 \in \{O \setminus o_i\} \cup D, n_2 \in O \cup D, n_1 \neq n_2$	(18)
$\begin{split} & \omega_{n_1,n_2,o_i}^v \leq \psi_{o_i,n_1}^v, \forall i \in I, \forall v \in V, \\ & n_1 \in \{O \setminus o_i\} \cup D, n_2 \in O \cup D, n_1 \neq n_2 \end{split}$	(19)
$\begin{split} & \omega_{n_1,n_2,o_i}^v \geq x_{n_1,n_2}^v + \psi_{o_i,n_1}^v - 1, \forall i \in \\ & I, \forall v \in V, \\ & n_1 \in \{O \backslash o_i\} \cup D, n_2 \in O \cup D, n_1 \neq n_2 \end{split}$	(20)
$\sum_{n_1 \in \{O \setminus o_i\}} \sum_{n_2 \in O \cup D} \omega_{n_1, n_2, o_i}^v +$	
$\sum_{\substack{n_5 \in O \cup D \cup \tilde{N} \setminus o_i \\ \sum_{n_3 \in D} \sum_{n_4 \in O \cup D} \omega^v_{n_3, n_4, o_i}} = y^v_{o_i},$	(21)
$\forall i \in I, \forall v \in V, n_1 \neq n_2, n_3 \neq n_4$	
$y_{o_i}^{v} \le q^{v}, \qquad \forall v \in V, \forall i \in I$	(22)
$x_{n_1,n_2}^v = \{0,1\},$	(23)
$\forall n_1 \in O \cup D \cup \widetilde{N}, \forall n_2 \in O \cup D, n_1 \neq n_2$	` '

A large-scale mixed integer program

- Minimize AVs' total travel time or fleet size
- Network topology constraints
- Trip timeline constraints
- Feasibility constraints
 - e.g., flow conservation; one visiting to each origin

Complexity

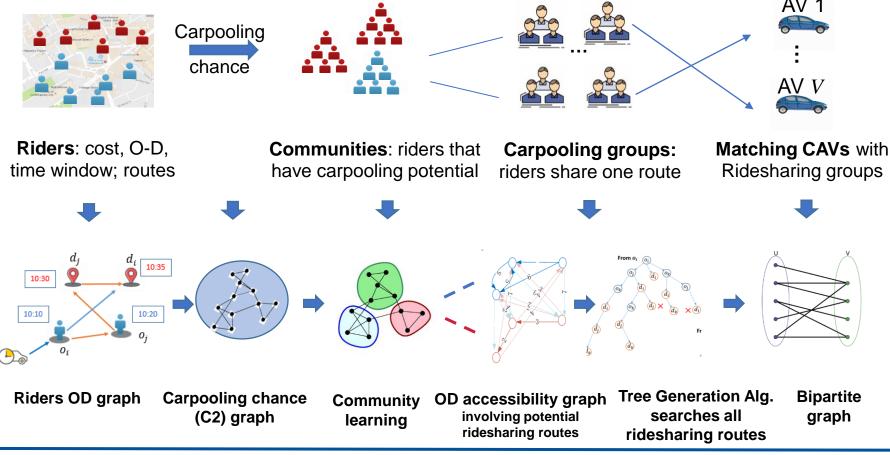
- |*V*|:# of AVs; |*I*|: # of riders
- The number of variables: $O(|V||I|^2)$
- The number of constraints: $O(|I||V|^2)$
- NP hard problem and no efficient algorithms for a large-scale problem

Our Solution

- Scale down by decomposing riders
- Transfer to network flow problem

Methodology

***** SCN: <u>Semi-Centralized</u> <u>Community</u> <u>Learning</u> based Ride-Matching Scheme Combined with <u>N</u>etwork Flow Approach



Peng, Wang, and Lili Du. "Investigating Optimal Carpool Scheme by a Semi-Centralized Ride-Matching Approach." IEEE Transactions on Intelligent Transportation Systems (2022). DOI: <u>10.1109/TITS.2021.3135648</u>

Transportation Institute UNIVERSITY of FLORIDA

Methodology: Carpool Chance and Graph

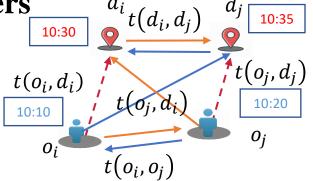
Carpooling chances (C2) between two riders

- A carpool route must be feasible to the timeline requirements of riders
- Short waiting time \Rightarrow stronger C2
- More travel time saving \Rightarrow stronger C2
- More candidate carpooling routes ⇒ stronger C2

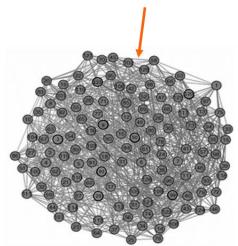
$$c_{ij} = \sum_{U_{ij}} \left[\underbrace{\frac{\Delta u_{ij}^{k}}{t_{o_{i}d_{i}}} + \frac{\Delta u_{ij}^{k}}{t_{o_{j}d_{j}}}}_{\text{travel time saving ratio}} \right] \left[\underbrace{1 - \frac{\varpi_{u_{ij}^{k}}}{\hat{\varpi}_{u_{ij}^{k}}}}_{\text{waiting time ratio}} \right] \forall i \neq j \in \mathbb{R}$$
Candidate
carpooling routes
Network flow approach

Carpool chances (C2) Graph

- Node: rider
- Connection with weight: carpool chance



carpooling chance between *i* and *j*



Carpooling chance graph

Peng, Wang, and Lili Du. "Investigating Optimal Carpool Scheme by a Semi-Centralized Ride-Matching Approach." IEEE Transactions on Intelligent Transportation Systems (2022). DOI: <u>10.1109/TITS.2021.3135648</u>

COTA Webinar 2022 June 30, 2022

Carpooling communities

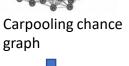
- Partition the C2 graph into smaller carpooling coalitions
- Strong C2 between riders within a carpooling community (strong <u>inner-C2</u>)
- Weak C2 between riders in different carpooling communities (weak <u>inter-C2</u>)

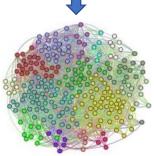
Community Detection

- Modularity $Q = \frac{1}{2m} \sum_{ij} [c_{ij} \frac{k_i k_j}{2m}] \delta(\pi_i, \pi_j)$
- Q increases ⇔ inner-C2 increases, or inter-C2 decreases
- <u>Start</u> with where every rider forms a community
- Merge two community leads to maximum increase of Q
- Stop when no operation improves Q

 $\delta(\pi_i, \pi_j) = 1$ when riders *i* and *j* in one community; $\frac{k_i k_j}{2m}$: the expected weight of edges between riders *i* and *j*

Peng, Wang, and Lili Du. "Investigating Optimal Carpool Scheme by a Semi-Centralized Ride-Matching Approach." IEEE Transactions on Intelligent Transportation Systems (2022). DOI: <u>10.1109/TITS.2021.3135648</u>





Carpooling community

ridesharing groups/routs within each community?

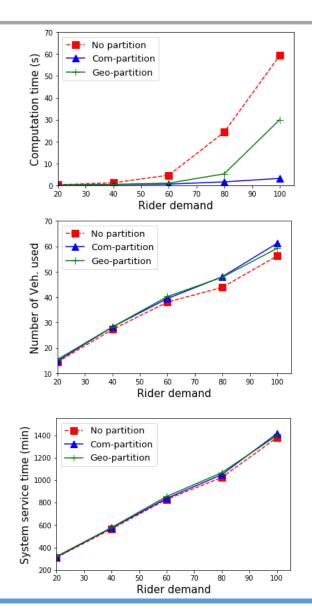
UF Transportation Institute UNIVERSITY of FLORIDA

COTA Webinar 2022 June 30, 2022

Experiments

* The Merit of Community Formation

- Community detection according to Carpooling chance significantly reduces the computation load from no-partition and Geopartition (split riders according to TAZs/districts).
- Community detection slightly compromises system performance than no-partition, but performs slightly better than using geopartition.
- Overall, Com-partition outperforms Geopartition and No-partition while coconsidering system performance and computation efficiency.

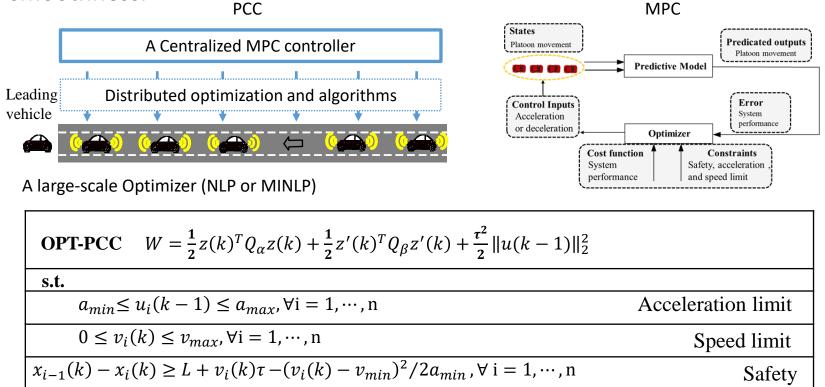


Peng, Wang, and Lili Du. "Investigating Optimal Carpool Scheme by a Semi-Centralized Ride-Matching Approach." IEEE Transactions on Intelligent Transportation Systems (2022). DOI: <u>10.1109/TITS.2021.3135648</u>

Transportation Institute UNIVERSITY of FLORIDA Platoon Centered Control (PCC)

System Optimal Platoon Centered Control (PCC) for CAV Car Following

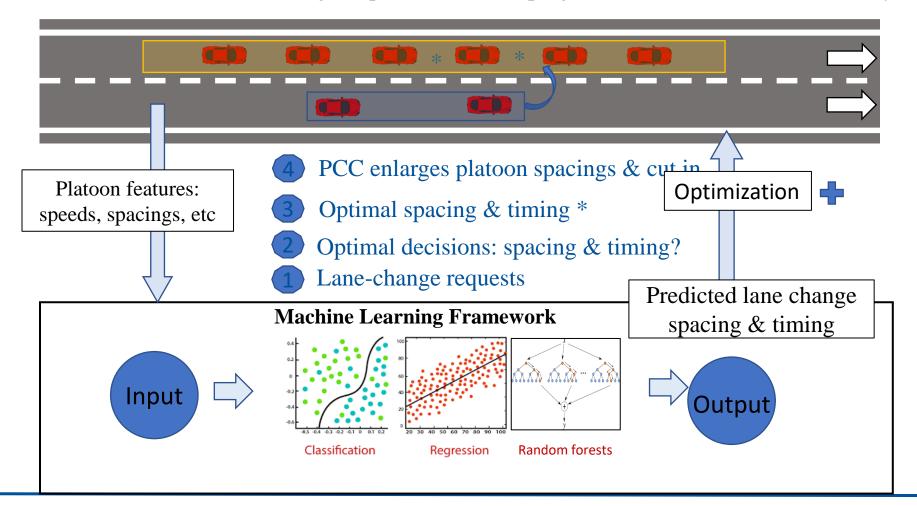
Consider entire platoon as system; uses a model predictive control (MPC) to determine platoon's movement to ensure safety, efficiency and traffic smoothness.



Vehicle dynamics; Other constraints under a special scenario, such as lane change (MINLP)

AI aided Cooperative Lane Change for a Platoon under PCC

□ The platoon under PCC determines the optimal spacings and timing to accommodate safe and smooth lane-change requests, while keeping traffic smoothness and efficiency.



Hanyu Zhang, Lili Du, Jinglai Shen (2021)Machine-learning aided Platoon-Based Cooperative Lane-change Control Using MPC Approach, Transportation research part B: methodological, 159, pp. 104-142

Transportation Institute

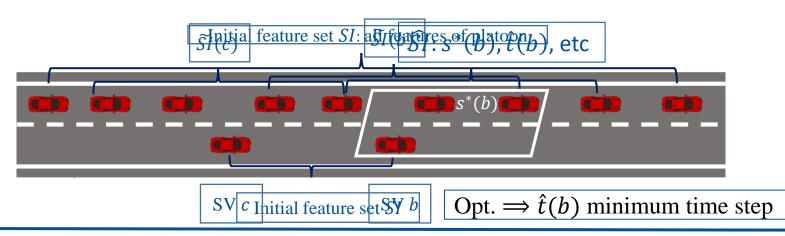
UNIVERSITY of FLORIDA

Solution Approach: ML-DBB Algorithm

UF Transportation Institute UNIVERSITY of FLORIDA

- □ Challenges to find the optimal cut-in spots
 - Quickly solve the NP-hard MINLP-MPC model within a control sample interval (< 1sec) for the control smoothness and continuity.
- □ Key Ideas (ML-DBB)
 - Use a machine learning (ML) to predict candidate spots (spacing and time steps)
 ⇒ reduce integer solution space.
 - Use distributed branch and bound (DBB) to find out the optimal solution in the candidate pool ⇒ split computation loads.
- Machine Learning Procedures

 $SI(all features) \rightarrow \tilde{SI}(SV's neigherhood) \rightarrow \hat{SI}(best spacing neighberhood)$



Hanyu Zhang, Lili Du, Jinglai Shen (2021)Machine-learning aided Platoon-Based Cooperative Lane-change Control Using MPC Approach, Transportation research part B: methodological, 159, pp. 104-142

Numerical Experiments: ML-DBB

□ Computation performance: the case with two lance change vehicles

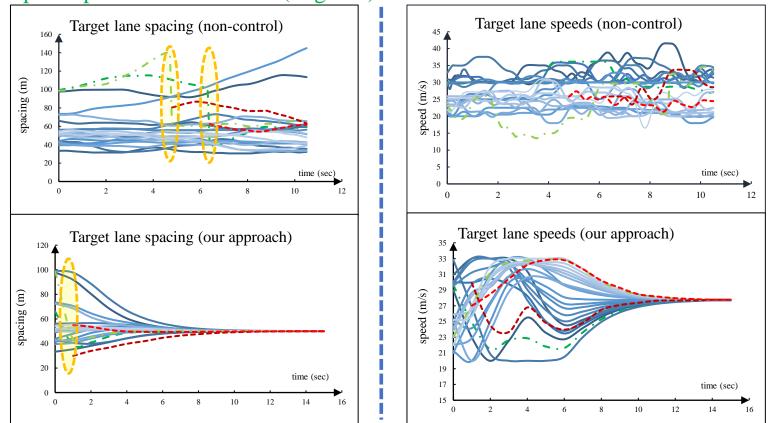
Solution optimality	ML-PP		ML-DBB-90	ML-DBB-99		
Global optimal	38.79%		84.80%	94.00%		
0-5% optimal	46.82%		10.60%	5.98%		
5-10% optimal	8.91%		2.83%	0.02%		
10-20% optimal	1.08%		0.40%	0.00%		
Infeasible	4.40%		1.37%	0.00%		
Total	100%		100%	100%		
Computation performance	Gurobi 8.0	ML-PP	ML-DBB-90	ML-DBB-99		
Computation time(s)	3.011	0.0632	0.1904	0.3292		
The time includes both DSRC communication time (Kenney, 2011) and the computation time						

Hanyu Zhang, Lili Du, Jinglai Shen (2021)Machine-learning aided Platoon-Based Cooperative Lane-change Control Using 12 MPC Approach, Transportation research part B: methodological (Accepted)

PCC based Cooperative Lane change: Experiments

■ Two lane-change vehicles (in red) and 21 platoon vehicles (in blue); target space/speed of host vehicle (in green)

Transportation Institute UNIVERSITY of FLORIDA



 PCC based cooperative lane change control can smoothen lane-change accommodation and then reduce traffic fluctuations as compared with the field traffic

Hanyu Zhang, Lili Du, Jinglai Shen (2021)Machine-learning aided Platoon-Based Cooperative Lane-change Control Using 13 MPC Approach, Transportation research part B: methodological (Accepted)

Summary

- Explosion of transportation data sources from persons, vehicles, and activity processes necessitates a new generation of methods and tools to analyze and visualize those data.
- Traditional approaches such as optimization, control, traffic flow analysis, dynamics, statistics, and more still function fundamentally.
- Machine Learning is a generic and powerful method— its value is largely dependent on the analyst's skill set and domain knowledge.
- The effectiveness of ML requires correctly integrating the variables and likely relationships by deeply understanding transportation domain knowledge.
- Hybrid approaches are more effective combining sound physics with statistical rigor and machine learning power.

Thank you and Q & A

lilidu@ulf.edu

University of Florida

Acknowledgments

- The presented research is partially supported by National Science Foundation awards CMMI-1436786, CMMI-1554559, and CMMI 1901994 as well as STRIDE UTC Center, Toyota InfoTech.
- My Ph.D students: Hanyu Zhang, Jiahua Qiu, Wang Peng (graduated), Hanyi Yang (graduated), Siyuan Gong (graduated)

Innovation, Development and Education Center