A Disaggregated Approach for Predicting the Equity Impacts of Autonomous Vehicles

Zhiwei Chen Assistant Professor Dept. of Civil, Architectural, & Environmental Engineering Dept. of Electrical & Computer Engineering (Courtesy) Drexel University

FSUTMS User Group Meeting, 03/22/2024

Drexel CAM Lab

Connected & Automated Vehicles (CAVs)

- Mobility: capacity quadrupled (Karaaslan, 1990)
- Energy: ↓ by up to **60%** (Stephens et al., 2016)
- Equity: mobility issue for 83% people over 65 (Stopher et al., 2021)

Ref:

Karaaslan, U., Varaiya, P., & Walrand, J. (1991, June). Two proposals to improve freeway traffic flow. In 1991 American Control Conference (pp. 2539-2544). IEEE.

Stephens, T. S., Gonder, J., Chen, Y., Lin, Z., Liu, C., & Gohlke, D. (2016). Estimated bounds and important factors for fuel use and consumer costs of connected and automated vehicles (No. NREL/TP-5400-67216). National Renewable Energy Lab.(NREL), Golden, CO (United States).

Stopher, P., Magassy, T. B., Pendyala, R. M., McAslan, D., Arevalo, F. N., & Miller, T. (2021). An Evaluation of the Valley Metro–Waymo Automated Vehicle RideChoice Mobility on Demand Demonstration, Final Report (No. FTA Report No. 0198). United States. Department of Transportation. Federal Transit Administration.

CAV Reality – Equity

• Most discussions are qualitative, few quantitative evidence.

Accessible to some

Accessible to all

Research Question

• Will the costs and benefits of AVs be distributed equitably to system users?

The elderly

Low-income population

Rural residents

Focus of This Study: AV Equity Impacts

Accessible to some

for policymaking

FHWA needs quantitative evidence

Funded project: Automated Vehicle Access, Mobility and Affordability for System Users

A Disaggregated Modeling Approach

Why Disaggregated Approach?

• Existing modeling works on AV equity impacts:

data aggregated to zonal levels, e.g., Cohn et al. (2019), Lee and Kockelman (2022).

 Our previous study on bike-sharing equity in southern Tampa (Chen et al. 2020): data aggregation hides individual differences in access to bike-sharing services.

Ref: Cohn, J., Ezike, R., Martin, J., Donkor, K., Ridgway, M., & Balding, M. (2019). Examining the equity impacts of autonomous vehicles: a travel demand model approach. Transportation research record, 2673(5), 23-35.

Lee, J., & Kockelman, K. M. (2022). Access benefits of shared autonomous vehicle fleets: focus on vulnerable populations. *Transportation research record*, *2676*(11), 568-582. Chen, Z., Guo, Y., Stuart, A. L., Zhang, Y., & Li, X. (2019). Exploring the equity performance of bike-sharing systems with disaggregated data: A story of southern Tampa. Transportation research part A: policy and practice, 130, 529-545.

A Disaggregated Modeling Approach

9

Agent-Based Simulation (ABS)

• Mesoscopic network simulation model

10

ABS: Simulating Private & Shared AVs

- Individuals would use private AVs even if shared AV services are available (Haboucha et al., 2017).
- MATSim built-in AV module only considers shared AVs.

av 12.0 API

The automated (autonomous) vehicle contrib is structured as follows:

- org.matsim.contrib.av.robotaxi: Simulation of large-scale autonomous taxi fleets
- org.matsim.contrib.drt: Basic packages for DRT simulation (with our without drivers)
- org.matsim.contrib.intermodal: Intermodal routing between pt and different modes, such as autonomous taxi fleets.

• We extended this module to consider private AVs: treat private AVs as part of the

shared AV fleet but only shared among household members

Ref: Haboucha, C. J., Ishaq, R., & Shiftan, Y. (2017). User preferences regarding autonomous vehicles. Transportation Research Part C: Emerging Technologies, 78, 37-49.

ABS: Estimating Private AV Ownership

- households ranked by historical expenditures on automobiles and also categorized into groups based on annual household income
- AV households are selected by preferentially assigning private AVs to those households who had higher expenditures on vehicles in the past

ABS: Estimating Shared AV Fleet

- the total number of ride-hailing vehicles not available
- # non-employer establishments under industry group 4853 (Taxi and Limousine Services) as a surrogate

	Partners	Researchers	Educators	Survey Respondents	News NAICS Co	odes J
	Topics	Data &	Maps	Surveys & Programs	Resource Library	Searc

	// Census.gov / Our Surveys & Programs / Nonemployer Statistics
Within Our Surveys & Programs	
About this Program	Nonomployer Statistics
Data	Nonemployer Statistics
Guidance for Data Users	Nonemployer Statistics (NES) is an annual series that provides subnational economic data for U.S businesses with no paid employees by industry. This series
Library	includes the number of establishments and total receipts.
News & Updates	Featured
Technical Documentation	
Contact Us	About this Program
	Information about the purpose, coverage, content, and uses of NES data
	٥
	Updates
	Announcements for NES data releases.
	0

ABS: Modeling AV Impact on Roadway Capacity

• A simple analytical model based on Ghiasi et al. (2017)

Ref: Ghiasi, A., Hussain, O., Qian, Z. S., & Li, X. (2017). A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method. Transportation Research Part B: Methodological, 106, 266-292.

ABS: Modeling AV Impact on Driving Behaviors

- A critical benefit of AVs that is frequently claimed by businesses is that AVs improve mobility of seniors and children who cannot drive (National Highway Traffic Safety Administration, 2017).
- Removed all escort trips from the travel itineraries of all individuals.
- Customized MATSim's utility scoring functions to consider individual sociodemographics, e.g., minimum driving age.

escorting kids to schools

Ref: National Highway Traffic Safety Administration. (2017). Automated driving systems 2.0: A vision for safety. Washington, DC: US Department of Transportation, DOT HS, 812, 442.

A Disaggregated Modeling Approach

Transportation System Outcomes

• Accessibility:

- the potential of each individual to access, within a certain time threshold, those locations of their typical daily activities (as represented by the daily travel itinerary): jobs, schools, recreational activities
- 1 if the travel time of this trip is no more than a given time threshold, and otherwise 0
- Mobility:
 - the amount of travel on the system as a proxy for ease of travel
 - we use person miles traveled per day as the indicator
- Affordability:
 - financial costs often determine which users benefit from technologies
 - we use the travel cost per dollar of household income to quantify affordability

A Disaggregated Modeling Approach

Gini Index

Does not consider population subgroups

Gini index =
$$\frac{A}{A+B}$$

0: most even

1: most uneven

Subgroup Inequality Index

$$SII_r = \log(\frac{\hat{Y}_r}{Y_r})$$

 SII_r : the extent to which members in subgroup r are disproportionally distributed among the population with accessibility above the population average

 \hat{Y}_r : the fraction of the population that belongs to subgroup r with an accessibility level above the population average

 Y_r : the fraction of the population that is subgroup r

$$SII_{\text{male}} = \log\left(\frac{\hat{Y}_{\text{male}}}{Y_{\text{male}}}\right) = \log(\frac{3/5}{5/10}) = 0.08$$
 Above 0; overrepresented

$$II_{\text{male}} = \log\left(\frac{\hat{Y}_{\text{male}}}{Y_{\text{male}}}\right) = \log(\frac{3/5}{5/10}) = 0.08$$
 Above 0; overrepresented

$$SII_{\text{female}} = \log\left(\frac{\hat{Y}_{\text{female}}}{Y_{\text{female}}}\right) = \log(\frac{2/5}{5/10}) = -0.10$$
 below 0; underrepresented

Case Study: Study Area

- Hillsborough and Pinellas Counties
- highly diverse population demographics
- Stakeholder interests

(companies testing AV models)

Case Study: Study Scenarios

• Five potential future scenarios based on the US Federal Highway Administration's (FHWA) previous scenario planning study for connected and automated vehicles

Scenario	Business	Niche	Steady	AVs are	Managed	
	as Usual	Growth	Growth	Common	Lanes	
Market penetration rate of AVs (%)	0	5	20	50	50	
Effective increase in roadway capacity (%)	0	2.6	11.1	33.3	33.3	
Minimum age to drive alone (years)	16	12	12	12	12	
Includes dedicated AV lanes	No	No	No	No	Yes	
Ratio of the operating cost for an AV vs a	Ν/Λ	2 5 2	1 66	1 0/	1 04	
conventional automobile	N/A	2.32	1.00	1.04	1.04	

Case Study: Focus Population

Results: Summary Statistics

- Mean commute time first increased and then decreased
- All types of accessibility considered first decreased and then increased
- # trips & miles travelled increased; travel cost/income decreased

			Scenario		
Indicator	Business as Usual	Niche Growth	Steady Growth	AVs are Common	Managed Lanes
Commute time (min)	39.3	42.7	38.6	32.8	30.7
Number of trips	4.21	4.05	4.01	3.94	3.94
Job accessibility	0.53	0.52	0.53	0.57	0.6
School accessibility	0.75	0.74	0.77	0.82	0.84
Social accessibility	0.65	0.64	0.67	0.72	0.74
Miles traveled (miles/day)	20.9	20.2	19.4	18.1	17.8
Travel cost/income (%)	15	17.3	15.8	14.5	14.4 24

Results: Gini Index

- Accessibility: First more equal then more equal
- Mobility: More unequal
- Affordability: not much affected
- Mobility and affordability more unequal than accessibility

			Scenario		
Indicator	Business as Usual	Niche Growth	Steady Growth	AVs are Common	Managed Lanes
Job accessibility	0.45	0.47 (4)	0.46 (2)	0.42 (-7)	0.39 (-13)
School accessibility	0.25	0.26 (4)	0.23 (-8)	0.18 (-28)	0.16 (-36)
Social accessibility	0.35	0.36 (3)	0.32 (-9)	0.28 (-20)	0.26 (-26)
Miles traveled	0.42	0.44 (5)	0.44 (5)	0.44 (5)	0.44 (5)
Travel cost/income	0.62	0.63 (0)	0.62 (0)	0.63 (2)	0.63 (2)

Gini index values (% change compared with the Business as Usual scenario in parenthesis)

Note: Values range from 0 to 1, with 0 indicating complete equality, and 1 indicating maximum disparity .

Results: SII

- Rural residents consistently had disproportionately lower access to employment, education, and social activities, travelled longer distances, and paid more for transportation.
- The low-income population had disproportionately higher access to employment and lower travel distances, but the highest disparity was for affordability.
- Senior citizens had disproportionately higher access to employment and travelled less than younger residents.
- No substantial gaps between males and females.

	() <u> </u>		<u> </u>			V			
	- 1	Rural	Low Income	Working Family	Above 65	Female				
	0.4 -						J			
	0.2 -	t t t t t					b Ac			
	0.0 -						cessib			
	-0.2						oility			
	0.4 -						<i>(</i> 0			
	0.2 -						Schoc			
	0.0 -						I Acc			
	-0.2 -						essibi			
dex	-0.4 -		1.1.1.1.1.1.1.				lity			
ty Inc	0.4 -						So			
qualit	0.2 -						ial A			
Inec	0.0 -						ccess			
roup	-0.2 -						sibility			
gduð	-0.4 -									
0)	0.2 -						Mil			
	0.0 -						es Tra			
	-0.2 -					· · · · · · · · · · · · · · · · · · ·	avelec			
	-0.4 -						-			
	0.4 -						Ţ			
	0.2 -	······································					avel C			
	0.0 -						¦ost/In			
	-0.2 -						Icome			
	-0.4 -									
	-	Usua rowth nmo ane	Usua rowtl rowtl nmo -ane	Usua rowtl rowtl nmo -ane	Usua rowtl rowtl nmo -ane	Usua rowtl rowtl nmo -ane				
		s as dy G Cor ged I	s as ne G dy G Cor ged I	s as ne G dy G Cor ged I	s as ne G dy G Cor ged I	s as ne G dy G dy G cor ged I				
		nnes: Nich Stea s are anaç	ines: Nich Stea s are ana	ines: Nich Stea s are lanag	ines; Nich Stea s are lana	ines: Nich Stear s are lana				
	Bus AV. AV. AV. AV. Bus AV.									
		Subgro	oup inequa	ality index	: above 0					
	overrepresented, below 0 underrepresented ²⁶									

Results: Comparing With Aggregated Analysis

Gini index values were decreased by the aggregated analysis, meaning that the • aggregated analysis hides individual differences that could have been captured in a disaggregated analysis.

comparison of Gim index values from disaggregated and aggregated analysis							
Scenario	Business as Usual		Steady G	rowth	AVs are Common		
Indicator	Disaggregated	Aggregated	Disaggregated	Aggregated	Disaggregated	Aggregated	
Job accessibility	0.45	0.21	0.46	0.21	0.42	0.19	
School accessibility	0.25	0.17	0.23	0.16	0.18	0.13	
Social accessibility	0.35	0.15	0.32	0.14	0.28	0.12	
Miles traveled	0.42	0.14	0.44	0.15	0.44	0.14	
Travel cost/income	0.62	0.26	0.62	0.25	0.63	0.26	

Comparison of Gini index values from disaggregated and aggregated analysis

Results: Comparing With Aggregated Analysis

 The aggregated analysis and the disaggregated analysis agree with each other in the disparity direction (represented by the sign of the SII), but the magnitude of inequality may not be the same.

Scenario	Business as Usual		Steady G	rowth	AVs are Common		
Indicator	Disaggregated	Aggregated	Disaggregated	Aggregated	Disaggregated	Aggregated	
Rural	-0.11	-0.28	-0.08	-0.23	-0.07	-0.17	
Low income (LI)	0.05	0.06	0.06	0.05	0.08	0.06	
LI working family	0.04	0.05	0.03	0.04	0.05	0.05	
Above 65	0.09	0.01	0.13	0.02	0.12	0.01	
Female	0.02	0.01	0.01	0.00	0.02	0.00	

Comparison of SII values from disaggregated and aggregated analysis

Key Insights

- AV technologies may not generate substantial benefits overall until adoption is wide
- AV technologies have potential to mitigate overall inequality in accessibility but impacts on existing inequities affecting disadvantaged groups may be mixed
 - When the AV market share reached 50% (the Managed Lanes scenario), the Gini index values for school
 accessibility, social accessibility, and job accessibility decreased by 36%, 26%, and 13%, respectively, from the nonAV scenario.
 - For most of the outcomes for which inequity existed in the Business as Usual scenario, the Managed Lane scenario either improved equity or left it unaffected.
- The impact of AV technologies on inequality in affordability deserves attention in equitable deployment strategies
- Disaggregated analysis is recommended for accurately representing equity impacts

Contact Information

Zhiwei Chen

Assistant Professor zc392@drexel.edu

