An Integrated Travel Demand, Mesoscopic and Microscopic Modeling Platform to Assess Traffic Operations for Manhattan, New York

Manhattan Network Complexity (continued)

- Truck deliveries
- Traffic enforcement agents
- Managed-use lanes
- Traffic signal coordination
- Bridge and tunnel operations

CAMBRIDGE

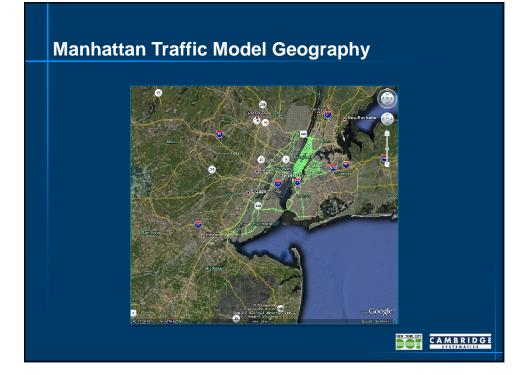
Available Models

- The Regional Activity-Based Travel Demand Model (NYMTC's Best Practice Model (BPM))
- Other agency activity or four-step travel demand models
- Individual project-based microsimulation models that cover a subarea or an individual corridor

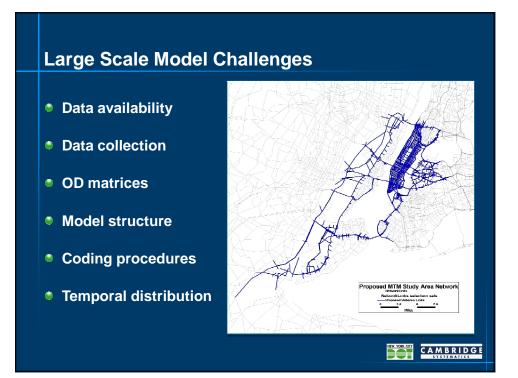
The Genesis of the Model

- Traffic stipulations historically were based on knowledge of the network and the anticipated impacts
- There are programmed and existing major construction projects throughout the network
- It became apparent to NYCDOT that there was a need for an analytical tool that would permit the assessment of network-wide cumulative impacts
- The first application is the proposed 34th Street Transitway

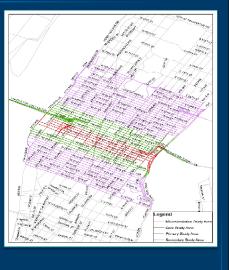
34th Street Transitway Modeling Goals and Objectives


- Develop a modeling platform to assess operational conditions in the Manhattan CBD, emerging from the proposed 34th Street Transitway design
- Develop a modeling platform to assist in the refinement of proposed design for the 34th Street Transitway
- Develop a modeling platform that could be used in the assessment of cumulative impacts on other current/future regional and local projects
- Develop a base network that could be a cornerstone for future analyses and or expansion to other boroughs

CAMBRIDGE

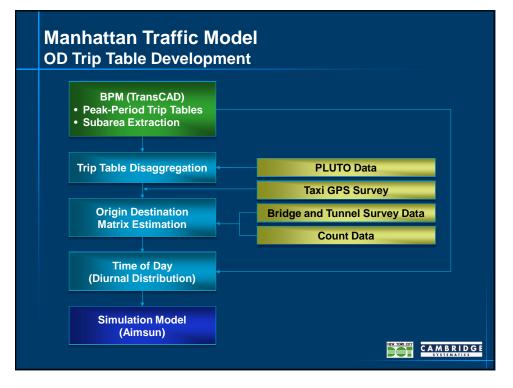

Multiresolutional Model Benefits

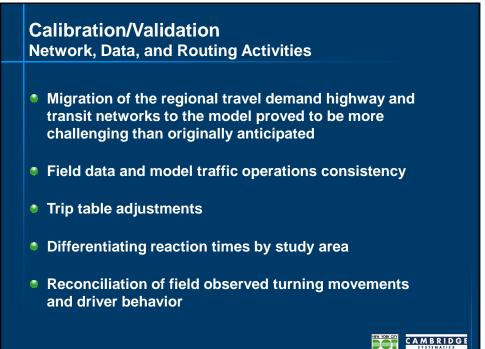
- "Step-down" from the regional model (BPM)
- Link travel demand forecasting and traffic operations
- Align program and project development processes
- Better support robust and inform decisions
- Provide the basis for a decisionsupport system



Large Scale Model Challenges (continued)

- Validation
- Calibration
- Mode shift
- Tunnel and bridge operations
- Impact of various scheduled projects


CAMBRIDGE


Analytical Issues Origin-destination (OD) matrix estimation Network geometry and coverage detail Duration of simulation Vehicle types to be modeled Level of validation (strategic versus local) Temporal distribution data source Software adaptation

Meso Trip Table Development

- Validation of NYMTC's BPM model at the boundaries of the mesoscopic study area
- Extracted trip table for meso model will need adjustment
- Origin-destination matrix estimation techniques (ODME)

- OD surveys to enhance "seed" table available
- Vehicle types (autos, taxis, and trucks)
- Taxi GPS data
- Initial temporal distribution based on the BPM

Calibration/Validation Network, Data, and Routing Activities (continued)

- Incorporation of toll and distance variables in the Initial and Dynamic Cost function
- Development of Initial and Dynamic Cost functions by vehicle type
- Testing of route choices utilizing one or more previous travel-time intervals
- Testing a variety of values for the toll, distance, and capacity attractiveness coefficients in the cost functions

CAMBRIDGE

Local look-ahead distance adjustments

Calibration/Validation Model Application

- Testing the Dynamic User Equilibrium (DUE) with a variety of number of iterations (10-100)
- Testing One-Pass Dynamic Traffic Assignment (DTA)
- Testing combinations of DTA and DUE
- Testing one and multiclass assignments

Calibration/Validation Software Adaptation

Custom script development to deal with dynamic parking regulations

- Custom scripts to deal with dynamic lane connection (turning movements)
- Modified-lane distribution to better accommodate short and wide sections
- Custom view scripts
- Custom feedback of paths as an initial starting point for the DUE

