ESTIMATING DISAGGREGATED FREIGHT COMMODITY FLOWS USING PUBLIC DATA - A CASE STUDY IN FLORIDA

Presenter: Yi Zhang, PhD

Southeast Florida FSUTMS Users Group August 25, 2023

- More detailed freight movement data would better support freight demand modeling and planning.
- Data availability has been a major impediment:
 - (1) Freight companies generally view truck movement data as proprietary information.
 - (2) Public freight dataset only provides freight flows on regional level
- Project Goal: disaggregated flows using public datasets

Freight Analysis Framework (FAF)

Develop disaggregated flows using FAF data

Estimating first-, middle- and last-mile e-commerce flows

FREIGHT ANALYSIS FRAMEWORK (FAF)

FREIGHT ANALYSIS FRAMEWORK (FAF)

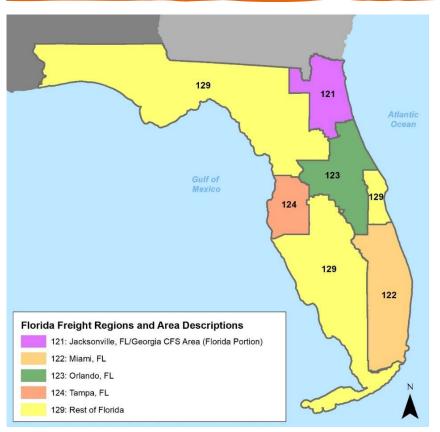
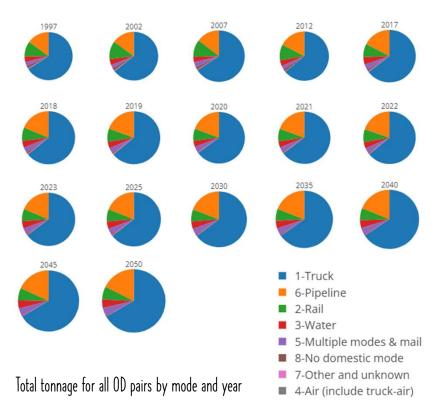


Table 4 FAF Foreign Regions •

Code	FAF Region		
801	Canada		
802	Mexico		
803	Rest of Americas		
804	Europe		
805	Africa		
806	SW & Central Asia		
807	Eastern Asia		
808	SE Asia & Oceania		


- FAF integrates data from the Commodity Flow Survey (CFS), international trade data from the Census Bureau, and data from agriculture, extraction, utility, and other sectors.
- FAF is produced by the Bureau of Transportation Statistics (BTS) with support from the Federal Highway Administration (FHWA).
- FAF 5 (current version) provides estimated freight flows (tonnage, value, ton-miles):
 - between FAF regions (132 domestic regions, 8 international regions)
 - by commodity (43) and mode (8),
 - for base year (2017), the recent years (2018–2022), and forecasts years (2023 2050).

FREIGHT ANALYSIS FRAMEWORK (FAF)

FAF Data Tabulation Tool

https://faf.ornl.gov/faf5/dtt_total.aspx

VISUALIZE FREIGHT FLOWS ON POWER BI

- Power BI is a data visualization software product developed by Microsoft.
- An interactive report was created using Power BI to visualize 2017 and 2050 FAF flows in Florida.

Within Florida (Tonnage/Value)

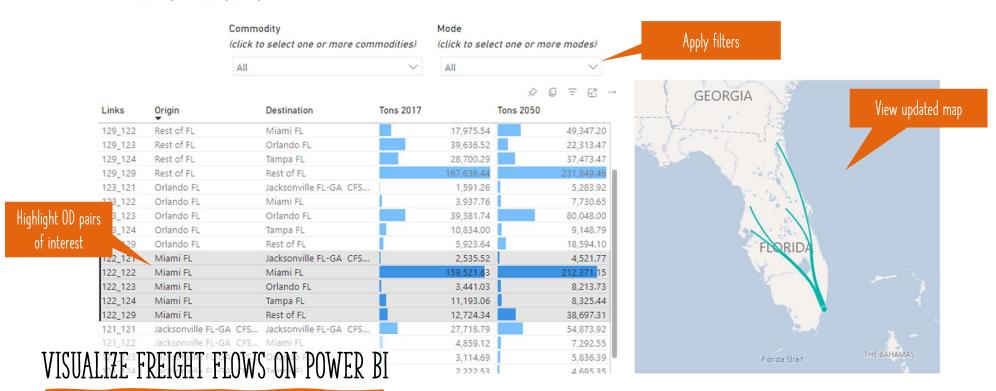
GEORGIA

A DRIOA

Florida Strait

THE BAHAMAS

Out of Florida (Tonnage/Value)


Into Florida (Tonnage/Value)

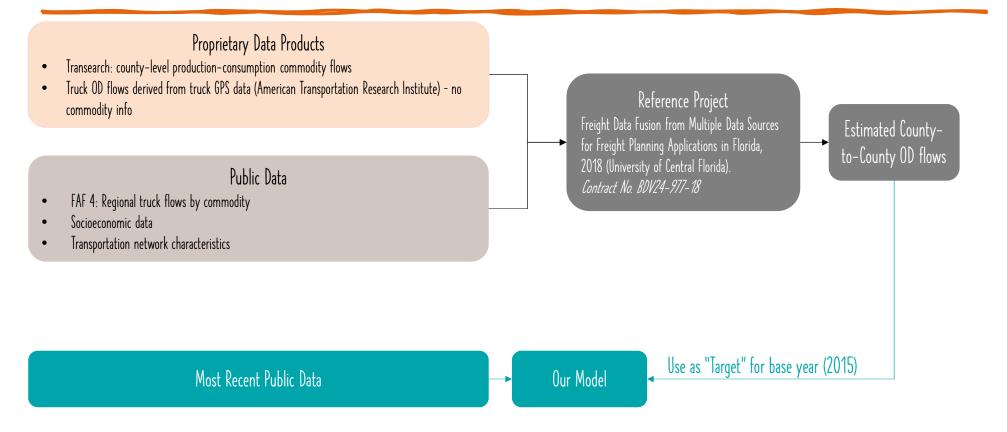
2017 Base Year and 2050 Future Year FAF Flows -- Tonnage (unit: thousand tons)

(Within Florida by Commodity and by Mode)

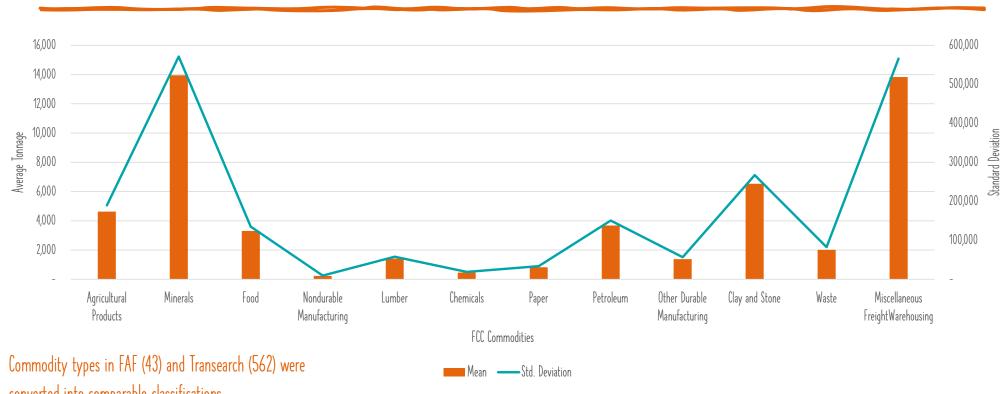
WHAT IS NEW? (FAF 4 VS FAF 5)

Mode Assignment

2017 CFS (the main data source for FAF 5) estimated transfer points based on commodity, volume, and distance. Commodity type was not considered in estimating the transfer point in 2012 CFS (the main data source for FAF 4).

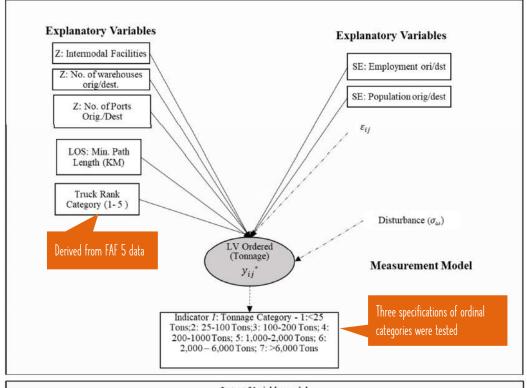

• Commodity codes

A machine–learning technique was utilized to input commodity codes, where the respondent provided a description of the product, but not an actual Standard Classification of Transported Goods (SCTG) code. With this SCTG input effort, the 2017 CFS, and consequently the associated FAF 5 data, contain more shipment data for some commodities in their records than prior FAF data.


	FAF 4 (Year 2045) Mid–Range Estimates		FAF 5 (Year 2050) Mid–Range Estimates	
Mode	Tonnage	Value	Tonnage	Value
	(thousand tons)	(million dollars)	(thousand tons)	(million dollars)
Grand Total	760,877	844,813	948,390	950,813
Air (includes Truck-Air)	79	9,998	57	3,449
Multiple Modes & Mail	5,076	40,222	26,609	140,712
Other and Unknown	202	3,554	277	3,625
Pipeline	1,353	1,482	44,335	11,314
Rail	23,805	2,445	35,039	9,218
Truck	715,564	769,909	840,376	778,343
Water	14,798	17,204	1,697	4,153

DEVELOP DISAGGREGATED FLOWS USING FAF DATA

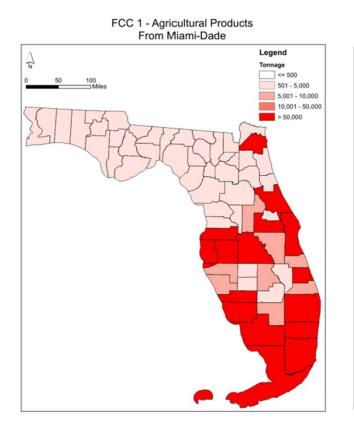
OUR MODEL

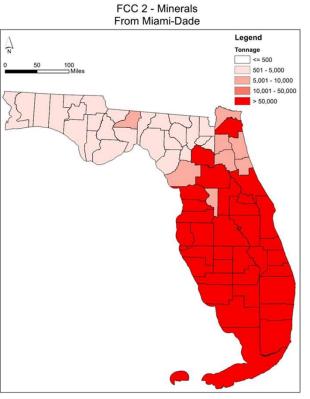

DISTRIBUTION OF TARGET DATA

converted into comparable classifications.

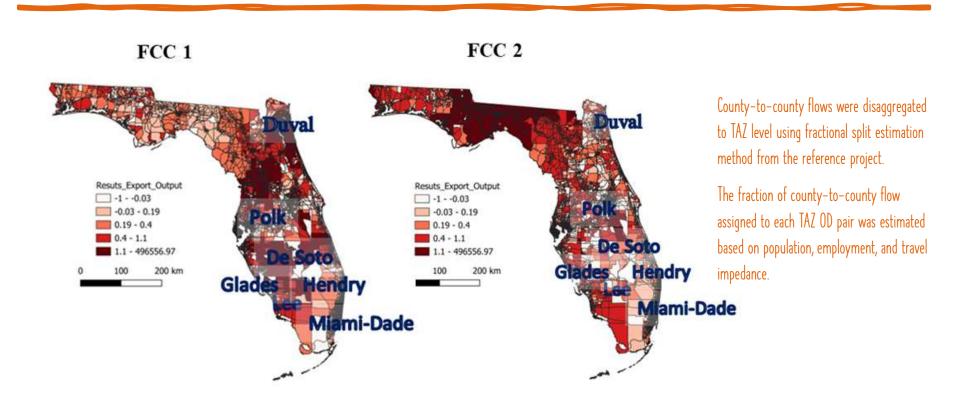
MEAN AND STANDARD DEVIATION PER FLORIDA COMMODITY CLASSIFICATION (FCC)

ANALYTICAL FRAMEWORK



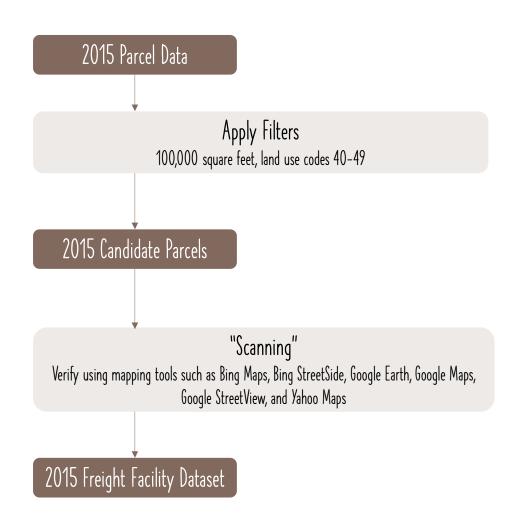

Latent Variable model Notation Observable variable Unobservable variable Structural relationship Measurement relationship Disturbances

LATENT ORDERED MODEL


- A latent ordered model contains latent variables with orderedcategorical (ordinal) indicators. <u>Latent variables</u> can only be inferred indirectly through a mathematical model, based on observable variables.
- Model was estimated using <u>Biogeme</u> a Python package designed for various models using <u>maximum likelihood</u> <u>estimation (MLE)</u>. MLE is a method of estimating the parameters of a statistical model, by finding the parameter values that maximize the likelihood of making the observations.

ESTIMATED COMMODITY FLOWS BY ORIGIN/DESTINATION COUNTY

ESTIMATED COMMODITY FLOW CHANGE (2020-2050) BY TAZ

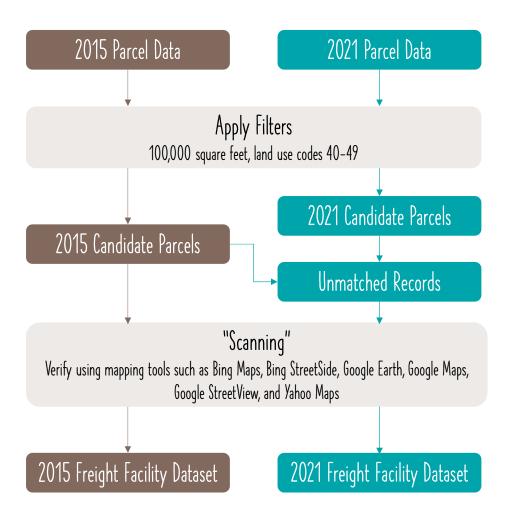


DATA GAPS FOR ESTIMATING FIRST-, MIDDLE- AND LAST-MILE E-COMMERCE FLOWS

IDENTIFY ORIGINS/DESTINATIONS

<u>The FDOT Freight Facility Dataset</u> is a statewide dataset of large-scale freight facilities developed by the Transportation Data and Analytics Office. This dataset identifies large freight facilities used in the "distribution of consumer and other goods that generate moderate to high levels of truck traffic", thus could be used to identify primary origins and destinations for freight flows.

<u>Freight Facility Dataset 2015</u> is the current dataset, but it can be updated using the latest <u>parcel data</u>.



IDENTIFY ORIGINS/DESTINATIONS

<u>The FDOT Freight Facility Dataset</u> is a statewide dataset of large-scale freight facilities developed by the Transportation Data and Analytics Office. This dataset identifies large freight facilities used in the "distribution of consumer and other goods that generate moderate to high levels of truck traffic", thus could be used to identify primary origins and destinations for freight flows.

<u>Freight Facility Dataset 2015</u> is the current dataset, but it can be updated using the latest <u>parcel data</u>.

Public data sources identified

TRUCK MOVEMENT DATA

FAF/CFS Data (Public):

- Disaggregating regional flows to local level is not feasible
- Used for validation or as supplementary input data

Truck GPS Data (e.g., ATRI):

- American Transportation Research Institute (ATRI) data is from freight shipping companies, and proprietary.
- Can be used to develop truck OD trips (e.g., 2014 Project: BDK84–977–20)
- To provide confidentiality of data, ATRI does not provide information such as commodity carried, weight or volume carried, purpose of travel, and the type of truck. Thus, other data sources are also needed, e.g.: Truck counts at FDOT TMSs, Weight-in-Motion data, FAF/CFS.

THANK YOU

Presented by

CTS Engineering, Inc.

3230 West Commercial Blvd, Suite 220, Fort Lauderdale, FL 33309

This project was funded by:

Forecast and Trends Office, Florida Department of Transportation.

MS 28605 Suwannee St, Tallahassee, FL 32399